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摘要 

奈米壓痕檢測技術為目前量測奈米尺度材料之機械性質的最主要方法之一。隨

著近年來奈米科技的蓬勃發展，製程技術所能製造出的奈米元件尺寸愈來愈小，以

往巨觀的檢測技術已不敷使用，尤其當材料的尺寸到逹原子級的尺度時，其所需之

檢測精確度更是巨觀檢測技術所難以達到的，因此奈米壓痕檢測技術乃成為非常重

要的微觀檢測技術。本文即利用奈米壓痕之數值及實驗方法對金屬薄膜在探針的壓

痕作用下，對其材料特性進行定性及定量之分析。 

本文研究方法第一部份先以分子動力學之平行運算對(100)、(110)及(111)三個定

向結晶面之鎳薄膜進行奈米壓痕之模擬分析，模擬結果顯示由探針作用所造成材料

塑性變形之應變能量乃是利用同質性孕核(Homogeneous Nucleation)的成形來儲

存，而利用{111}滑移面的錯位滑移(Dislocation Sliding)來釋放。三個定向結晶面之

壓痕曲線從曲線局部最高點到局部最低點的陡峭變化、壓痕表面的堆積隆起(Pile-up)

形貌之擴散程度，以及硬度(Hardness)與彈性模數(Elastic Modulus)之材料性質等，

均受材料{111}滑移面之滑移角的數目所影響；第二部份則利用分子動力學結合有限

元素法與平行運算之多尺度模擬對(100)定向結晶面之鎳薄膜進行奈米壓痕之模擬

分析，在與相同模擬條件之全分子動力學的模擬結果比較下，由壓痕曲線及壓痕變

形形貌之模擬結果驗証了本文對於分子動力學結合有限元素法所建立之多尺度模型

的正確性；第三部份則是利用奈米壓痕儀(Nanoindenter)結合聚焦離子束顯微鏡(FIB)

與穿透式電子顯微鏡(TEM)來對氮化鎵(GaN)薄膜因壓痕所引起的局部相變化機制

進行實驗分析。對三五族的氮化鎵材料而言，在壓痕負載的過程中，壓痕曲線會有

突然跳躍(pop-in)的現象產生，此現象乃為材料的錯位成核(Dislocation Nucleation)之



 viii

變形機制，但在奈米壓痕過程中所導致的相變化機制則不存在於氮化鎵薄膜中。 

關鍵詞: 分子動力學，有限元素法，奈米壓痕，金屬薄膜，材料特性 
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Abstract 

    Molecular dynamics (MD) simulations are applied to elucidate the anisotropic 

characteristics in the material responses for crystallographic nickel substrates with (100), 

(110) and (111) surface orientations during nanoindentation. The strain energy of the 

substrate exerted by the tip is stored by the formation of the homogeneous nucleation, and 

is dissipated by the dislocation sliding of the {111} plane. The steep variations of the 

indentation curve from the local peak to the local minimums are affected by the numbers 

of slip angle of {111} sliding plane. The pile-up patterns of the three nickel substrates 

prove that the crystalline nickel materials demonstrate the pile-up phenomenon from 

nanoindentation on the nanoscale. The three crystallographic nickel substrates exhibit 

differing amounts of pile-up dislocation spreading at different crystallographic 

orientations. The effects of surface orientation in material properties of F.C.C. nickel 

material on the nanoscale are observable through the slip angle numbers of {111} sliding 

planes which influence hardness values, as well as the cohesive energy of different 

crystallographic surfaces that indicate Young’s modulus. Furthermore, the multiscale 

simulations are performed on the (100) monocrystal nickel substrate by using 

nanoindentation, compensating for MD limitation of a large specimen simulation without 

significant increase in the size of the problem. This study examines the accuracy of the 

coupling method for the multiscale model by means of the indentation curve and the 

deformation profile. 

    Nanoindentation-induced mechanical deformation in GaN thin films prepared 

by metal-organic chemical-vapor deposition (MOCVD) was investigated using the 

Berkovich diamond tip in combining with the cross-sectional transmission electron 



 x

microscopy (XTEM). By using the focused ion beam (FIB) milling to accurately 

position the cross-section of the indented region, the XTEM results demonstrate that the 

major plastic deformation was taking place through the propagation of dislocations. The 

present observations are in support of attributing the pop-ins appeared in the 

load-displacement curves to the massive dislocation activities occurring underneath the 

indenter during loading cycle. The absence of indentation-induced new phases might 

have been due to the stress relaxation via substrate and is also consistent with the fact that 

no discontinuity was found upon unloading. 

Key words: Molecular dynamics, Finite element method, Nanoindentation, Metal thin 

films, Material characteristics 
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Nomenclature 

pA  The contact area 

[C] Element damping matrix 

rE  The reduced elastic modulus 

E Young’s modulus 

iF  The interaction force of atom i 

H  The Hamiltonian function 

dH  The Hardness 

ch  The contact depth 

[J] Jacobian matrix 

Bk  Boltzmann constant 

[K] Element stiffness matrix 

L  The Lagrangian function 

im  The mass of atom i 

[M] Element mass matrix 

N Total atom numbers 

[N] The matrix of shape function 

iP  The momentum of atom i 

maxP  The maximum load of the tip at the maximum depth 

Q
r

 The vector of nodal displacement 

Q&
r

 The vector of nodal velocity 
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Q&&
r

 The vector of nodal acceleration 

ir  The position of atom 

ir&  The velocity of atom i 

ir&&  The acceleration of atom i 

T The kinetic energy 

U  Potential function 

ijw  Weight function of atom 

lw  Weight function of element 

nnσ  The normal stress 

nmσ  The shear stress 

nnε  The normal strain 

mnε  The shear strain 

pπ  The potential energy 

ν  Poisson’s ratio 
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Chapter 1 Introduction 

1.1 Motivation 

In general, mechanical properties such as the elastic modulus and hardness of the 

nano-thin film can be measured by nanoindentation techniques. In recent years, the 

measurement of the operation specimen by nanoindentation techniques was fallen below 

the level of 100 nm [1-2]. Accordingly, these techniques provide researchers an excellent 

opportunity to obtain the characteristics of the material properties of nano-thin films. 

However, the experimental method of nanoindentation measurement on nano-thin films is 

not easy to accomplish, both because the experimental techniques are on the atomic-scale 

level, and because it is difficult to investigate the transient atomic information inside the 

specimen during the nanoindentation process. Therefore, theoretical methods can 

accompany experimental techniques to provide much useful information without the 

limitations of the experimental method. Though the theoretical method is useful for 

analysis of nanoindentation on the nanoscale, it must be passed through the numerical 

method in order to completely observe the variations in the process of nanoindentation. 

Correspondingly, molecular dynamics (MD) simulation, which is suitable for 

nanoindentation analysis under nanoscale, is a powerful numerical method to describe the 

detailed variations at the atomic scale. 

MD simulation studies were initiated in the late 1950s at the Lawrence Radiation 

Laboratory (LRL) by Alder and Wainwright [3-4] in the field of equilibrium and 

non-equilibrium statistical mechanics. The application of MD simulation to the cutting 

and indentation process was first introduced at Lawrence Livermore National Laboratory 

(LLNL) in the late 1980s and early 1990s [5-6]. Pioneering research in the field of MD 
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simulations of indentation was conducted by Landman et al [7-10] at the Georgia Institute 

of Technology, followed by Belak and his colleagues at the Lawrence Livermore National 

Laboratory (LLNL). Since then, MD simulation has been applied to a wide range of 

fields, including crystal growth, low-pressure diamond synthesis, laser interactions, 

nanometric cutting [11-17], indentation [18-22], and tribology [23-27]. Nowadays, MD 

methods using empirical interatomic potentials can be implemented in simulating 

large-scale systems of up to ten million atoms [28-29]. 

1.2 Nanoindentation of Crystal Metal Orientation Surfaces 

Recently, considerable attention has been devoted to atomic scale processes and the 

measurable techniques of materials. Specifically, the material properties of substrates of 

nanoscale thickness have received attention because of the specific characteristics of their 

mechanical and physical properties [30-31]. Nickel is one of the favored materials for 

either reactively or catalytically forming a smooth electroless deposition of additional 

thin layers in order to provide enhanced magnetic read-write capability on magnetic 

memory disks [32-33]. In micro electro-mechanical system (MEMS) application, nickel 

has been found to have excellent mechanical and magnetic properties that can be 

exploited to realize movable structures [34-37]. At this small scale, the macroscale 

deformation of the bulk material will be less significant than the influences of different 

local atomic arrangement or the surface orientation upon which a nanoscale deformation 

mechanism imposes an external force [38]. This study examines the relationships 

between material properties and deformation mechanisms of surfaces of different 

crystallographic orientations under nanoscale, because they can provide significant 

information for the manufacture and design of nano-components, one of 
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nanotechnology’s promising applications. 

However, because of the limitation of the experimental indentation equipment, 

research is rarely published that focuses on the influence of different surface orientations 

on the mechanical properties of the indentation substrate during nanoindentation. Even 

for molecular dynamics simulations, there are no complete and systematic discussions on 

this topic. In related studies, Mante et al [39] performed an investigation of the elastic 

modulus and hardness of selected crystallographic planes of single crystal titanium using 

a mechanical properties microprobe (MPM). Gouldstone et al [1] utilized 

nanoindentation experiments on thin film of polycrystalline aluminum of known texture 

and different thicknesses, and of single crystal aluminum of different crystallographic 

orientations. Wang et al [40] presented a study about the dependence of nanoindentation 

pile-up patterns and of micro-textures on the crystallographic orientation using high 

purity copper single crystals. Komanduri et al [27] utilized MD simulations of 

nanoindentation followed by nanoscratching conducted on single crystal aluminum (with 

the crystal set up in the (001) [100] orientation and with scratching performed in the [100] 

direction) at extremely fine scratch depths (from 0.8 nm to near zero) to investigate 

atomic-scale friction. Subsequently, Komanduri et al [41] used MD simulations to 

investigate the effect of crystallographic factors (crystal orientation and direction of 

scratching) in indentation and scratching conducted on single crystal aluminum at 

specific combinations of orientations {(111), (110), (001), (120)} and scratch directions 

<[110], [ 2 11], [100], [210], [221]>. Kum [42] performed MD simulations to study 

anisotropic features in nano-mechanical properties at the surface of nickel single crystals 

as a function of indenter size and velocity for three crystallographic orientations: (100), 
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(110), and (111). 

For the previously mentioned research, although Komanduri [27, 41] performed MD 

simulations of nanoindentation to study the influences of crystallographic factors on FCC 

metals in indentation and scratching, the only material used in the simulated models is 

single crystal aluminum. Moreover, the atomic phases depicting deformation in the 

simulated models are only presented in 2D morphologies, and neither the homogeneous 

nucleation nor the dislocation sliding of plastic deformation are clearly visible during 

indentation and scratching. In addition, although Kum [42] performed MD simulations to 

investigate the orientation effects of elastic-plastic deformation on (100), (110), and (111) 

crystallographic orientations of nickel substrates—which is similar to our current 

investigation—the main aim of Kum’s research was to calculate the parameters of power 

law on the initial stage of the indentation curve in order to obtain the nano-mechanical 

properties of elastic deformation. The plastic deformation characteristics of dislocation 

and nucleation in the course of indentation were not presented in the study, and the 

influences of three crystallographic orientations on the mechanical properties of both the 

hardness and the elastic modulus were not discussed [42]. Therefore, the main purpose of 

this paper is to use MD simulations of nanoindentation to analyze the influences of both 

plastic deformation characteristics and of atomic stress variations on the material 

properties of different crystallographic nickel substrates during nanoindentation, 

compensating for the experimental limitation of nanoindentation-particularly for pure 

nickel substrates of three crystallographic orientations. The notable results of our research 

include the presentation of 3D atomic phases of plastic deformation induced by 

indentation corresponding to atomic stress distributions, diagrams of the pile-up patterns 
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at the maximum indentation depth, and the extracted material properties from the 

indentation curves for (100), (110), and (111) crystallographic orientations of nickel 

substrates in the course of nanoindentation. 

1.3 Nanoindentation of Multiscale Crystal Metals 

Over the years a number of approaches have been developed to simulate dynamics 

in condensed phases. In the atomistic regime, the molecular dynamics (MD) simulation 

technique has been successfully carried out to investigate the mechanical behaviors of 

structures on nanoscale [43-46]. Because of the availability of accurate interatomic 

potentials for a range of materials, classical MD simulations have become prominent as a 

tool for elucidating complex physical phenomena. However, the length and time scales 

that can be probed using MD are still fairly limited. In principle, length scales of MD 

simulations could be made larger, but simulations with 1010
 
particles must be performed 

by the most advanced computers currently available, in despite of the real physical 

systems usually containing 2310
 
particles [47]. Therefore, for the study of nanoscale 

mechanics and materials, the analytic model up to a scale of several microns, consisting 

of billions of atoms, which is too large for MD simulations. 

Current parallel supercomputers can deal with up to billions of atoms, where the 

spatial size is still in sub-micro meters. Similarly, in regard to the temporal scale 

calculations, the parallel algorithm in MD simulations is still very difficult to achieve a 

realistic condition as compared with the experiments to date. Consequently, it is currently 

impossible to model an entire macroscopic domain with atoms by using MD simulations, 

despite the recent advances in computational power. By contrast, the finite element 

method (FEM) can be successfully modeled to describe the physical phenomenon passing 
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through material on macroscopic scale [48,49]. By means of FEM analysis, the analytic 

model for the scientific problems can be simply solved by the highly efficient calculation, 

tying in parallel algorithm with FEM simulations, which significantly enlarge to a 

practical time and length scales. Besides, it has also a strong point for the quantitative and 

qualitative precision in the continuum analysis on the macroscopic scale. However, it is 

not always powerful in some circumstances, especially for the descriptions of the atomic 

behavior at the microscopic scale. For the FEM approach, the major shortcoming in the 

numerical analysis lies in the constitutive relations, governed by the continuum theory, 

which is incapable to obtain the precise solutions under the effect of nanoscale [50]. 

Additionally, FEM simulations tend to fail for the phenomenal descriptions at the atomic 

scale due to the inability of continuum models to describe defects. Despite these efforts, it 

is unclear whether a convergent solution for the correct phenomenology can in fact be 

reached. 

A remarkable approach can be solved for the above-mentioned problems, which had 

been recently proposed in many researches, namely multiscale methodology. It is to 

combine a MD simulation for the central regions within the system with a FEM for a 

continuum description of the remainder of the system. By the use of multiscale analysis, 

it can be applied to many problems that a critical region or regions, much smaller than the 

overall computational domain, is defined using atomic level descriptions capable of 

producing appropriate behavior at the nanoscale; meanwhile, outside of the atomistic 

region, where strain fields are smoothly varying, continuum mechanics is used to 

describe the material deformation behavior over larger length scales. Accordingly, 

multiscale methods are a class of simulation methods that have become useful and 
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important within the past decade [50]. Much of this is due to the fact that the governing 

physics and mechanics of deforming media have been elucidated over the course of time. 

Another crucial factor at play is the recent explosion in computational power. As 

combining the two scale approaches, the multiscale method leads straight towards a new 

revolution in computational mechanics. 

With regard to the literature review for the proposed research of multiscale method 

in the past decades, a classic example is the pioneering work of Clementi and coworkers 

[51]
 
in 1980s where they used quantum mechanics, atomistic dynamics, and fluid 

dynamics to predict the tidal circulation in Buzzard’s Bay Massachusetts. They first used 

high quality quantum mechanical methods to evaluate the interaction of several water 

molecules. Since then, multiscale simulation has been applied to the various fields, 

including nanocomponent analysis [52-55], crack fracture analysis [51,53,55,56-61], 

wave propagation [57,62], nanoindentation [53,63-67], nanometric cutting [47], and 

stress distribution analysis [68-69]. Nowadays, there were many methodologies to couple 

MD and FEM which had been successfully developed. Systematically, these 

methodologies can be classified into several categories: the bridging scale method (BSM) 

[50,52,56-57,70-74], meshfree particle method (MPM) [53-54], the quasicontinuum 

method (QCM) [47,58,63-67,75-76], the coarse-grained molecular dynamics (CGMD) 

[77], the coupled atomistic dislocation dynamics (CADD) [78-80], the macroscopic 

atomistic ab initio dynamics (MAAD) [51,60], the coupling of length scales method 

(CLS) [55,59], and the finite element and atomistic method (FEAt) [61,81-82]. As the 

present article is not intended as an exhaustive review, the interested reader can refer to 

the multiple scale review papers of Curtin et al. [80], and Liu et al. [83]. 
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Among these previously mentioned literatures of multiscale research, a widely used 

approach is to implement the coupling through a so-called “handshake” region, which is 

essentially the interface between the MD and FEM regions. In this method, the finite 

element mesh is graded down to the atomic lattice size in an overlap, or ‘‘handshake’’, 

region; the dynamics is governed by a total Hamiltonian function that combines the 

separate Hamiltonians of the different regions in an appropriate way 

[51,55,59-62,68-69,78-79,80-82,84]. In the handshake region, a certain weighted factor is 

performed between the MD description and the coarse grid description. These researches 

briefly include: Dewald et al. [78] employed the CADD method to quantify the error in 

dislocation driving forces for dislocations near the atomistic/continuum interface. 

Abraham [51] utilized the MAAD method to simulate the crack growth of solid silicon 

slab corresponding to the stress wave propagation. Rudd et al. [55] performed the 

multiscale simulations of dynamical systems at finite temperature using the CLS method 

with applications in fracture and Micro-Electro-Mechanical Systems (MEMS). Izumi et 

al. [82] used the FEAt method to analyze the shear-strain dominant field of silicon flat. 

Lidorikis et al. [69] adopted the CLS method to study the stress distributions in the 

interface of silicon/silicon-nitride nanopixels. Liu [68] et al. established a full 3D model 

with a combination of MD and FE by the overlapping transition zone to study the stress 

distributions in an epitaxial island. 

In this paper, a newly coupled method of the weighted function using the handshake 

region to combine MD and FE, proposed by Lidorikis et al. [69,84], was adopted in our 

hybrid FE/MD simulations, because this method exhibits a simple characteristic and fits 

in with our demand for coupling the MD and FE regions. We take nanoindentation as an 
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investigation problem for assessing the performance of the coupled method involving 

multiple length scales, and confirm the accuracy of our hybrid model as compared with 

the results of full MD simulations. The present results of nanoindentation simulations are 

performed in the prototype FCC transition metal nickel (Ni). By means of the multiscale 

approach, it can be allow for the consideration of large volumes of material and hence for 

the minimization of unwanted effects induced by the limited size of the specimen and by 

the boundary conditions. 

1.4 Nanoindentation of Crystal Metal Semiconductors 

The development of microsystems and nanotechnology has relied, in many ways, on 

the major progress accomplished in surface science and materials science and, in 

particular, thin film technology. In the past, much effort has been devoted to 

characterizing the optical, electrical and magnetic properties of the resultant structures 

and devices. Recently, it has become clear that, in order to fully harvest the 

unprecedented potential of the emerging nanotechnologies in general, the 

processes-induced structural and mechanical modifications on the materials might be 

equally important. For instance, over the last two decades, gallium nitride (GaN) epitaxial 

films and devices have attracted considerable attention because of their broad 

applications in blue/green light emitting diodes [85], laser diodes and photodetectors [86], 

as well as high-power or high-temperature electronics [87]. However, the successful 

fabrication of devices based on epitaxial GaN thin films requires a better understanding 

of the mechanical characteristics in addition to their optical and electrical performance, 

since the contact loading during processing or packaging can significantly degrade the 

performance of these devices. Consequently, there is a growing demand for investigating 
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the mechanical characteristics of materials, in particular in the nanoscale regime, for 

device applications. 

In trying to mimic the contact loading frequently encountered in wire-bonding 

packaging, there are several issues to be addressed. Firstly, the mechanical responses of a 

thin film to an applied load might be vastly different from that of the same bulk material. 

For this purpose, unfortunately, the traditional methods such as tensile measurements do 

not scale well into the micrometre and nanometre scale. Secondly, the role of structural 

changes under contact loading are largely underestimated owing to the difficulties in 

probing the structural characterizations of thin films affected by the contact interaction 

directly. In this respect, the advent of nanoindentation instruments and the subsequent 

development of the underlying science may potentially address the scaling issue and the 

scientific evaluation of all contact loading related phenomena. Since the deformation that 

occurred during the test is controlled locally on the nanometre scale, nanoindentation has, 

recently, been widely used to investigate the deformation mechanisms of various 

semiconductors [88–90], in combination with the molecular dynamics simulations for 

analysing the atomic interactions [91–93]. In addition, the mechanical properties of 

surfaces of solids and thin films, such as the hardness and Young’s modulus, have been 

extracted using this technique [94-96]. 

Despite the successes obtained from the nanoindentation studies in GaN thin films, 

this technique itself does not provide direct information on subsurface deformation 

mechanisms, crack initiation and dislocation propagation. Therefore, complementary 

methods capable of providing such information are needed. In most nanoindentation 

studies, both Raman microspectroscopy [89] and plan-view TEM [90] techniques have 
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been successfully used to analyse the phase transformation and defect/dislocations 

propagation along the horizontal direction of materials. However, they are inadequate to 

distinguish the phase changes inside the deformed zone along the direction of the 

concentrated applied stress. The focused ion beam (FIB) miller, which is now widely 

used for a range of material characterization applications [88], is an excellent tool for 

preparing transmission electron microscopy samples to reveal the cross-sectional 

microstructure of the locally deformed regions. In this report, we employed this method 

to investigate the subsurface deformation structures as well as the possible substrate 

deformations involved in the Berkovich nanoindentation performed on GaN films, 

compensating for the numerical limitation of nanoindentation-particularly for MD 

simulation. The detailed microstructure evolution resulting from the perpendicularly 

contact-induced deformed region was examined to correlate with the features exhibited in 

the obtained load–displacement measurements. 
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Chapter 2 Theory 

2.1 Governing Equation of Molecular Dynamics 

Molecular dynamics (MD) has been widely used to simulate properties of liquids, 

solids, and molecules in several research disciplines. It is an important approach to 

understand microscopic character of nature. MD is derived form a new concept called, 

phase trajectory. We computed the trajectories of molecules using classical Newtonian 

mechanics and we described features of the molecule trajectory in classical nonlinear 

dynamics. And obtain properties by analyze the trajectory with kinetic theory, statistical 

mechanics, and sampling theory. In addition, periodic boundary conditions and 

conservation principles are used to hold accuracy of MD simulation. Combined these 

tools form the foundation of molecular dynamics. Newtonian second law can be 

expressed as follows: 

2

2

td
rd

mrmF i
ii == &&  (2.1) 

where ir  is the position vector of molecule i as shown in Fig. 2.1. Since Newton’s 

second law is time independent or equivalently. Equation (2.1) is invariant under time 

translations. Consequently, we expect there to be some functions of the positions and 

velocities whose value is constant in time; this function is called the Hamiltonian, as 

follows: 

constPrH NN =),(  (2.2) 

where ii rmp &=  is the momentum of molecule i. For an isolated system, total energy E 

is conserved, where E is equal to the sum of kinetic energy and potential energy. Thus, 
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for an isolated system, we identify total energy as the Hamiltonian; then for N spherical 

molecules, H can be written as 

ErUp
m

prH N

i
i

NN =+= ∑ )(
2
1),( 2  (2.3) 

where )( NrU  results from the intermolecular interactions. First consider the total time 

derivative of the general Hamiltonian (2.2) 

t
Hr

r
Hp

p
H

td
dH

i i
i

i
i

i ∂
∂+⋅

∂
∂+⋅

∂
∂=∑ ∑ &&  (2.4) 

if, as is (2.3), H has no explicit time dependence, then the last term on the RHS of (2.4) 

vanishes and we are left with, due to H=const 
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If Hamiltonian is expressed as (2.6), then 
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On comparing (2.5) and (2.6), we find for each molecule i 
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Substituting (2.7) into (2.5) gives 
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Since the velocities are all independent of one another, equation (2.10) can be satisfied 

only, for each molecule i, we have 

i
i

p
r
H

&−=
∂
∂  (2.11) 

Equation (2.7) and (2.11) are Hamilton’s motion equation. For a system of N particles, 

Equation (2.7) and (2.11) represent 6N first-order differential equations that are 

equivalent to Newton’s 3N second-order differential equation (2.1). 

In the Newtonian view, motion is a response to an applied force. However, in the 

Hamiltonian view, motion occurs in such a way as to preserve the Hamiltonian function, 

where the force does not appear explicitly. For an isolated system, the particles move in 

accordance with Newton’s second law, tracing our trajectories that can be represented by 

time-dependent position vectors )(tri . Similarly, we also have time-dependent 

momentum )(tpi . At one instant, there are positions and momenta of the N particles in a 

6N dimensional hyperspace. Such a space, called phase space, is composed of two parts: 

a 3N-dimensional configuration space, in which the coordinates are the components of 

position vectors )(tri , and a 3N-dimensional momentum space (or velocity space), in 

which the coordinates are the components of the momentum vectors )(tpi . As time 

evolves, the points defined by positions and momentum in the 6N phase space moves, 

describing a trajectory in phase space. 

2.2 Tight-Binding Potential 

It is widely recognized that empirical many-body potentials can reproduce with 

good accuracy the thermodynamic and structural properties of most transition metals [98]. 
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In the last years, these potentials have been extensively used to analyze a variety of 

problems in materials science by MD computer simulations. The main advantage of a 

many-body treatment over the conceptually and practically simpler pair-potential 

description is the ability to better reproduce some basic features of metallic systems. A 

relatively simple scheme for relating the atomic and electronic structure, without 

resorting to the complex treatment of first-principles calculations, is the Tight-Binding 

(TB) potential. The pair-wise intermolecular potential form as follow: 
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where the subscripts i and j represent atom i and atom j, respectively, ξ  is an effective 

hopping integral, rij is the distance between atoms i and j, and r0 is the first-neighbors’ 

distance. The total band energy is characterized by the second moment of the d-band 

density of state and is shown in the first part of the potential function. Meanwhile, the 

second part reveals a modified form of the original tight-binding potential. The free 

parameters of A,ξ , p and q are fitted to the experimental values of cohesive energy, 

lattice parameters (by the constraint on the atomic volume), and independent elastic 

constants for each pure system and for alloys. The interaction force Fi on atom i is 

derived from the equation (1), can be expressed as 
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where im  is the mass of atom i, r is the position of atom i, and N is the total number of 

atoms. By using equation (2.13), the resultant forces of each individual atom can be 

calculated at each time step. 
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2.3 Initial Conditions 

1. A minimum requirement for the MD simulation to be valid is that the results of a 

simulation of adequate duration are insensitive to the initial state, so any convenient 

initial state is allowed. 

2. A particular simple but practical choice is to start with the particles at the sites of 

some regular lattice, e.g., the square or simple cubic lattice, and spaced to give the 

desired density. 

3. The velocities are assigned random directions and a fixed magnitude based on 

temperature. 

4. The speed of equilibration to a state in which there is no memory of this arbitrarily 

selected initial configuration is normally quite rapid, so that more careful attempts at 

the constructing a “typical” state are of little benefit. 

5. For FCC lattice, there are four atoms per unit cell, and the system is centered at the 

origin. 

6. The velocity magnitude is fixed, each velocity vector is assigned a random direction, 

and the velocities are then adjusted to ensure that the center of mass is at rest. 

7. For leapfrog method, if the users do not care the minor difference between 0=t  

and 2/tt Δ=  in setting the initial velocities, then there is no further work required. 

If the difference is not to be overlooked, a single interaction computation is all that 

is required. 

2.4 Periodic Boundary Condition 

Unless the purpose of the MD simulation is to capture the physics near real walls, a 

problem that is actually of considerable importance, walls are better eliminated by using 
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periodic boundary conditions (PBC). Physical meaning of periodic boundary conditions 

is shown in Fig. 2.3. The introduction of PBC is equivalent to considering an infinite 

space-filling array of identical copies of simulation region. There are some consequences 

of this PBC: 

1. A particle that leaves the simulation region through a particular bounding face 

immediately reenters the region through the opposite face. 

2. A wraparound effect needs to be considered. Particles lying within a distance cr  of 

a boundary interact with particles in an adjacent copy of the system, or, equivalently, 

with particles near the opposite boundary. 

3. This wraparound effect of the PBC must be taken into account in both the 

integration of the equations of motion and the interaction computations. (Checking 

the coordinates of particles if they move outside the region.) 

4. Periodic boundary conditions are most easily handled if the region is rectangular in 

two dimensions, or a rectangular prism in three dimensions. This is not an essential 

requirement, and any space-filling convex region can be used, although the 

boundary computation is not as easy as those in rectangular one. The motivation to 

choose alternative region shapes is to enlarge the volume to surface ratio, thus 

increase the maximum distance between particles before periodic ambiguity appears. 

5. Using PBC will restrict the interaction range to no more than half the smallest region 

dimension. 

6. Even with PBC, finite-size effects are still present. So how big the simulation region 

should be? It depends on what kind of system and the properties of the interest. As a 

minimum requirement, the size should exceed the range of any significant 
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correlations. Only detailed numerical experiments can hope to resolve this question. 

2.5 Rescaling Method 

Rescaling method keep wall isothermal by modify total kinetic energy. In 

microcosmic size, temperature is related to kinetic energy, when we set the temperature 

of correction layer, it means to set the average kinetic energy of atoms on the correction 

layer, so we must keep he kinetic energy fixed. (Equation (2.14)), so we have a reference 

value. Then, use equation (2.15) we compute the total kinetic energy of atoms. Finally, 

we start rescaling by using equation (2.16) to make the total kinetic energy in the 

correction layer is the same as reference value which we computed in equation (2.15) 
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where N is total atoms in the correction layer; Bk  is Boltzmann constant; dkE  is the 

total kinetic energy defined by dT ; akE  is the total kinetic energy of atoms in the 

correction layer; dT  is the boundary temperature which we need; aT  is the average 

temperature of atoms in the correction layer before modification; old
iV  is the velocity of 

atom in the correction layer before modification; new
iV  is the velocity of atom in the 

correction layer after modification.
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2.6 Cell Link List Combined Verlet List 

Basic idea of this method is to divide the simulation region into a lattice of small 

cells, and that the cell width exceeds cr . If particles are assigned to cells based on their 

instantaneous positions, then it is obvious that interactions are only possible between 

particles that are either in the same cell or in immediately adjacent cells. Because of 

symmetry only half the neighboring cells need to be considered. For example, a total of 

14 neighboring cells must be examined in three dimensions (include the cell itself). In 

addition, the wraparound effects can be readily incorporated into the scheme. In general, 

the region size must be at least 4 cr  for this method to be useful. 

There are several ways of implementing this cell link list method to connect the 

relation between particles and cells. In the current demonstration code, it utilizes concept 

of the pointers for particles and cells. Each cell stores a particle number, which may be 

zero or nonzero. Nonzero value represents a true particle number, while the zero value 

represents either the last atom in the cell or an empty cell. In addition, only one array cell 

list is used to represent the particles and cells. The obvious advantage of doing this is we 

know exactly the size of this array in advance if periodic boundary conditions are used. 

Of course, there are several other methods to implement this idea of cell link list 

technique. Ideas depicting in the above can be clearly illustrated as Fig. 2.4. 

A list of all particle pairs with separation crr >max  is maintained and updated every 

say 10 or 20 time steps. rmax is chosen large enough that it is unlikely that a particle pair 

not in the list will come closer than rc before the list is updated. It is also possible to 

decide automatically when the neighbor list needs to be updated. When the list is created, 

a vector for each particle is set to zero. At each time step, the vector is incremented by the 
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particle displacement. For example, see the Fig. 2.5. We could combine cell link method 

and Verlet list method, see Fig. 2.6; by this way, it could promote the performance of the 

simulation. 

2.7 Leap-Frog Method 

Leapfrog method is completely equivalent algebraically and yield coordinates that 

are accurate to third order in tΔ . However, it tends to be considerably better than the 

higher-order methods from the viewpoint of energy conservation. In addition, their 

storage requirements are also minimal. The derivation of the Verlet formula follows 

immediately from the Taylor expansion of the coordinate variable typically )(tx  

)()()2/()()()( 32 hOtxhtxhtxhtx +++=+ &&&  (2.17) 

where t is the current time, and th Δ≡ . Here, )(tx&  is the velocity component, and 

)(tx&&  the acceleration or force )(tf  in reduced MD units. Note that although )(tx&&  has 

been expressed as a function of t, it is actually a known function via the force law of the 

coordinates at time t. After rearrange equation (2.17), we obtain 

)()()()(2)( 42 hOtxhhtxtxhtx ++−−=+ &&  (2.18) 

The truncation error is of order )( 4hO  because the h3 term cancels. A possible 

disadvantage of equation (2.18) is that at low machine precision the h2 term multiplying 

the acceleration may prove a source of inaccuracy. The velocity is not directly involved in 

the solution, but if required it can be obtained from 

)(2/)]()([)( 2hOhhtxhtxtx +−−+=&  (2.19) 

with higher-order expression based on values from earlier time steps available if needed, 

though rarely used. The leapfrog method is equally simple to derive. Rewrite the Taylor 
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expansion as 

)()]()2/()([)()( 3hOtxhtxhtxhtx +++=+ &&&  (2.20) 

The term multiplying h is just )2/( htx +& , so equation (2.20) becomes (2.22) below. The 

leapfrog integration formulate are then 

)()2/()2/( txhhtxhtx &&&& +−=+  (2.21) 

)2/()()( htxhtxhtx ++=+ &  (2.22) 

The fact that coordinates and velocities are evaluated at different times dose not present a 

problem; if an estimate for )(tx&  is required there is a simple connection that can be 

expressed in either of two ways: 

)()2/()2/()( txhhtxtx &&m&& ±=  (2.23) 

The initial conditions can be handled in a similar manner, although a minor inaccuracy in 

describing the starting state, namely, the distinction between )0(x&  and )2/(hx& , is often 

ignored. 

2.8 Atomic Decomposition Algorithm 

In the atom decomposition method, as shown in Fig. 2.7, each processor, which 

owns nearly the same number of atoms as other processors and in which atoms are not 

necessarily geometrically nearby, integrates the Newton's equation for all atoms and 

moves the atoms of their owns. However, this method requires global communication at 

each time step, which becomes unacceptably expensive as compared with the “useful” 

MD computation when the number of atoms increase to a certain amount, since each 

processor has to know all information (position and velocities) of all atoms at each time 

step. On equivalently, the communication is O(N), where N is the number of atoms in the 
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system that is independent of the number of the processors, P. Thus, the atom 

decomposition method is generally suitable for small-scale problem. 

2.9 Governing Equation of Finite Element Method 

In dynamic problems the displacements, velocities, strains, stresses and load are all 

time-dependent. The procedure involved in deriving the finite element equations of a 

dynamic problem can be stated by the following step: 

Step1: Idealize the body into E finite elements. 

Step 2: Assume the displacement model of element e as 

( )
( )
( )
( )

( )[ ] ( )tQtzyxN
tzyxw
tzyxv
tzyxu

tzyxU e)(,,,
,,,
,,,
,,,

,,,
rr

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=  (2.24) 

where U
r

 is the vector of displacements, [ ]N  is the matrix of shape functions and )(eQ
r

 

is the vector of nodal displacements which is assumed to be a function of time t. 

Step 3: Derive the element characteristic (stiffness and mass) matrices and characteristic 

(load) vector. From equation (2.24), the strain can be expressed as 

[ ] )(eQB
rr

=ε  (2.25) 

and the stress as 

[ ] [ ][ ] )(eQBDD
rrr == εσ  (2.26) 

By differentiating equation (2.26) with respect to time, the velocity field can be obtained 

as 

( ) ( )[ ] ( )tQzyxNtzyxU e)(,,,,, &r&r =  (2.27) 

where )(eQ&
r

 is the vector of nodal velocities. To derive the dynamic equations of motion 
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of a structure, we can use either Lagrange equations [105]. The Lagrange equations are 

given by 
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where 

pTL π−=  (2.29) 

is call the Lagrangian function, T is the kinetic energy, pπ  is the potential energy, R is 

the dissipation function, Q is the nodal displacement and Q&  is the nodal velocity. The 

kinetic and potential energies of an element “e” can be expressed as 
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where )(eV  is the volume, ρ  is the density and U&
r

 is the vector of velocities of 

element e. By assuming the existence of dissipative forces proportional to the relative 

velocities, the dissipation function of the element e can be expressed as 
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where μ  can be called the damping coefficient. In equation (2.30) to (2.32), the volume 

integral has to be taken over the volume of the element and in equation (2.32), the surface 

integral has to be taken over that portion of the surface of the element on which 

distributed surface forces are prescribed. By using equation (2.24) to (2.26), the 



 24

expressions for T , pπ  and R can be written as: 
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where Q
r

 is the global nodal displacement vector, Q&
r

 is the global nodal velocity vector, 

and cP
r

 is the vector of concentrated nodal forces of the structure or body. By defining 

the matrices involving the integrals as 
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Step 4: Assemble the element matrices and vectors and derive the overall system 

equations of motion. Equation (2.33) to (2.35) can be written as 
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=

=
E

e

eK
1

)(  (2.45) 

[ ]=C master damping matrix of the structure [ ]∑
=

=
E

e

eC
1

)(  (2.46) 
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By substituting equation (2.42) to (2.44) into equation (2.29), we obtain the desired 

dynamic equations of motion of the structure or body as 

[ ] [ ] [ ] )()()()( tPtQKtQCtQM
rr&r&&r =++  (2.48) 

where Q&&
r

 is the vector of nodal accelerations in the global system. If damping is 

neglected, the equations of motion can be written as 

[ ] [ ] )()()( tPtQKtQM
rr&&r =+  (2.49) 

Steps 5 and 6: Solve the equations of motion by applying the boundary and initial 

conditions. Equation (2.48) or (2.49) can be solved by using the techniques of a set of 
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simultaneous linear differential equations for propagation problems. Once the time 

history of nodal displacements, )(tQ
r

, is known, the time histories of stresses and strains 

in the elements can be found as in the case of static problems. Special space-time finite 

elements have also been developed for the solution of dynamic solid and structural 

mechanics problems [106-107]. 

2.10 Element Stiffness Matrix 

The element stiffness matrix is given by 

[ ] [ ] [ ] [ ]∫∫∫=
)(

)(

eV

Te dVBDBK  (2.50) 

Since the matrix [ ]B  is expressed in natural coordinates, it is necessary to carry out the 

integration in equation (2.50) in natural coordinates too, using the relationship 

[ ] dtdsdrJdzdydxdV ⋅== det  (2.51) 

Thus equation (2.50) can be rewritten as 

[ ] [ ] [ ][ ] [ ]∫ ∫ ∫− − −
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1
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)( det dtdsdrJBDBK Te  (2.52) 

2.11 Numerical Computation 

Since the matrix [ ]B  is an implicit (not explicit) function of r, s and t, a numerical 

method has to be used to evaluate the multiple integral of equation (2.52). The Gaussian 

quadrature has been proved to be the most efficient method of numerical integration for 

this class of problems. By using the two-point Gaussian quadrature, which yields 

sufficiently accurate results, equation (2.52) can be evaluated as [108]: 
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where 

[ ] [ ] [ ] [ ]( ) ( )⎥⎦
⎤

⎢⎣
⎡ ⋅

kji TSR

T JBDB
,,

det  (2.54) 

indicates the value of [ ] [ ] [ ] [ ]( )JBDB T det  evaluated at iRr = , jSs =  and kTt = , 

and 57735.0111 −=== TSR  and 57735.0222 +=== TSR . 

2.12 Direct Integration of Equations of Motion 

The direct integration of the equations of motion provides the response of the system 

at discrete intervals of time which are usually equally spaced. Determination of the 

response involves the computation of three basic parameters: displacement, velocity, and 

acceleration. The integration algorithms are based on appropriately selected expressions 

that relate the response parameters at a given interval of time to their values at one or 

more previous time points. In general, two independent expressions of this nature must be 

specified. The equation of motion written for the time interval under consideration 

provides the third expression necessary to determine the three unknown parameters. 

Direct integration thus involves a marching along the time dimension. It is assumed 

that at the beginning of the integration, response parameter values have been specified or 

have been computed at one or more points preceding the time range of interest. These 

specified or computed values permit the marching scheme to be begun so that response 

can be computed at as many subsequent points as desired. The accuracy and stability of a 

scheme depend on the expressions selected for relating the response parameters at a time 

to their historic value, as well as on the magnitude of the time interval used in the 

computation. 

In the following sections we present several methods used in numerical integration 
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of the equation of motion and discuss their relative accuracy as well as the conditions that 

must be met to guarantee stability of the solution. The following notations are used in the 

presentation: =h time interval, hnt n = , =nu =displacement at time hn , =nu& velocity 

at time hn , =nu&& acceleration at time hn , and =np the applied forces at time hn . 

2.12.1 Derivation of General Formulas 

As mentioned in section 2.12, time integration methods are based on appropriately 

selected expressions relating the response parameters at a given interval of time to their 

values at one or more previous points. A general expression of this type can be written as 

RuCuBuAu l

n

knl
ll

n

knl
ll

n

knl
ln +++= ∑∑∑

+

−=

+

−=−=
+ &&&

11

1  (2.55) 

where R is a remainder term representing the error in the expression, and lA , lB , and 

lC  are constants, some of which may equal zero. 

Equation (2.55) relates the displacement, velocity, and acceleration at time point 1+n , to 

their values at the previous points kn − , 1+− kn , …, n. The equation has km 35 +=  

undetermined constants A, B, and C. By a suitable choice for the values of these constants, 

the equation can be made exact in the special case where u is a polynomial of order 1−m . 

When the formula is exact, the remainder term R will equal zero. Now, if equation (2.55) 

is exact for a polynomial of order )1( −m , it will also be exact when u takes any one of 

the following values 1, t, 2t , …, 1−mt . Therefore, to evaluate the m constants, we can 

successively set u equal to each of these values in turn, and in each case make a 

substitution in equation (2.55). This procedure yields m simultaneous equations involving 

the set of m coefficients lA , lB , and lC . A solution of these equations provides the 
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required values for the coefficients. 

Now if mtu =  is substituted into equation (2.55), R cannot be expected to equal 

zero automatically. We will designate the resulting value of R by mE . It will be evident 

that the larger the number of terms in equation (2.55), the smaller will be the magnitude 

of truncation error R. Equation having many terms may, however, encounter spurious 

roots and instability, characteristics that we shall examine in some detail later. It may not, 

therefore, be desirable to use all m free constants to reduce the truncation error. An 

approach having practical usefulness is to employ equation (2.55) to represent exactly a 

polynomial of order 1−p , p being an integer smaller than m. Then )( pm −  constants 

become available which can be assigned arbitrary values chosen so as to improve the 

stability or convergence characteristics of the resulting formula. 

A formula that is exact for polynomials up to an order 1−m  has a truncation 

error mE  when mtu = . It is of interest to estimate the truncation error term when u is a 

polynomial of order higher than m, or in the more general case, when u is a function other 

than a polynomial. Standard textbooks on numerical analysis show that in most cases the 

truncation error term R is given by 

hnhknu
m
E

R mm )1()()(
!

)( +≤≤−= ξξ  (2.56) 

where )(mu  is the value of the m th differential of u at ξ=t . Parameter ξ  is, in 

general, not known, and it may not therefore be possible to obtain a precise value for R. 

Nevertheless, equation (2.56) can often be used to provide an upper bound on R. An 

estimate of the truncation error term may be helpful in choosing one formula over the 

other, although such error is not the only criterion in the choice of a formula. 



 30

The procedure described in the foregoing paragraph is a very general method of finding 

formulas. In fact, all formulas of type equation (2.55) that are used in structural dynamics 

for time integration can be derived using the procedure described. However, very often 

such formulas are obtained from physical considerations, such as, for example, an 

assumed variation in the acceleration u&& , or from the well-known finite difference 

approximations of the differentials. In the following sections, we develop, both from the 

underlying physical considerations, and by using the technique of this section, a number 

of more commonly used methods of numerical integration of the equation of motion. In 

each case we also derive the truncation error term. 

2.12.2 Newmark’s β  Method 

In 1959, Newmark devised a series of numerical integration formulas which are 

collectively known as Newmark’s β  methods. We derive Newmark’s formulas by the 

general method of section 2.12.1. The velocity expression is of the form 

13211 ++ ++= nnnn uauauau &&&&&&  (2.57) 

Equation (2.57) is automatically satisfied with 1=u , so that we still have three free 

constants, 1a , 2a , and 3a . We use two of them to make the formula exact for tu =  

and 2t , leaving one of the constants slack. Substitution into equation (2.57) gives 

32
2

1

222
1

aahtu

atu

+==

==
 (2.58) 

We now have two equations and three unknowns. We assign an arbitrary value to one of 

the unknowns and determine the other two from equation (2.58). Let us select ha γ=3 , 

where γ  is an arbitrary constant. We then get 
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)1(
1
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=
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a

 (2.59) 

Equation (2.57) now takes the form 

Ruhuhuu nnnn ++−+= ++ 11 )1( &&&&&& γγ  (2.60) 

There error term is obtained by substituting 3tu =  in equation (2.60), so that 
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Using equation (2.56) and (2.57), we get 
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Constant γ  is usually selected to be 1/2. With this value for γ , equation (2.60) becomes 

Ruhuhuu nnnn +++= ++ 11 22
&&&&&&  (2.63) 

Further, the error term given by equation (2.62) becomes zero. This implies that the 

formula is exact for polynomials of order up to 3. The new error term is obtained by 

substituting 4tu =  and can be shown to be 

)(
!12

)4(
3

ξuhR −=  (2.64) 

The displacement expression in Newmark’s β  method is 

13211 ++ +++= nnnnnn ububububu &&&&&  (2.65) 

Equation (2.65) has four free constants. We use three of them to make the formula exact 

for 1=u , t, and 2t . Substituting these values of u, in turn, in equation (2.65), we obtain 
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Equation (2.66) provides three relationships among four unknowns. We assign an 

arbitrary value 2hβ  to 4b  so that )2/1(2
3 β−= hb . Equation (2.65) now reduces to 

Ruhuhuhuu nnnnn ++−++= ++ 1
22

1 )
2
1( &&&&& ββ  (2.67) 

The error term R is obtained by substituting 3tu =  in equation (2.67), which gives 
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and 
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By assigning different values to γ  and β , a series of integration formulas can be 

obtained. As an example, when 0=γ  and 0=β , Newmark’s β  method reduces to 

the constant-acceleration method, which we have already discussed. Other more 

commonly used versions of the Newmark’s β  method are: The average acceleration 

method, 2/1=γ , 4/1=β . 

2.12.3 Average Acceleration Method 

When γ  is set equal to 1/2 and 4/1=β , equation (2.60) and (2.67) reduce to 
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The error term in equation (2.70) has been obtained from equation (2.64). For 4/1=β , 

the error expression of equation (2.69) is not applicable. The error term in equation (2.71), 

obtained by a somewhat more complicated procedure [109], represents an upper bound. 

The coordinate value mξ  lies between 0 and h and is selected to give the maximum 

value of differential )3(u . Equation (2.70) and (2.71) can also be derived by assuming that, 

as indicated in Fig. 2.11, the acceleration of the system remains constant over the small 

interval h and its value is equal to the average of the values of accelerations at the 

beginning and end of the interval: 

)(
2
1

1++= nn uuu &&&&&&  (2.72) 

For simplicity, we shift the origin on the time axis to point nt . Then by integrating 

equation (2.72) and applying the boundary conditions nuu && =  at 0=t  and 1+= nuu &&  at 

ht = , we get 

)(
2 1+++= nnn uutuu &&&&&&  (2.73) 

and 

)(
2 11 ++ ++= nnnn uuhuu &&&&&&  (2.74) 

Integration of equation (2.73) with the boundary conditions nuu =  at 0=t  and 

1+= nuu  at ht =  yields 

)(
4 1

2

1 ++ +++= nnnnn uuhhuuu &&&&&  (2.75) 

Equations (2.74) and (2.75) are, of course, the same as equation (2.70) and (2.71), 

respectively. The third relationship is obtained by writing the equation of motion at time 
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point 1+n : 

1111 ++++ =++ nnnn pukucum &&&  (2.76) 

Equation (2.74) and (2.75) combined with equation (2.76) enable us to solve 

for 1+nu , 1+nu& , and 1+nu&&  in terms of nu , nu& , and nu&& . From equation (2.75) we obtain 

nnnnn uuhuu
h

u &&&&& −−−= ++ )(4
121  (2.77) 

Substitution of equation (2.77) into equation (2.74) gives 

)(2
11 nnnn uu

h
uu −+−= ++ &&  (2.78) 

Finally, on substituting for 1+nu&&  and 1+nu&  from equation (2.77) and (2.78) in equation 

(2.76) and collecting terms, we get 
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Equation (2.79) can be solved for 1+nu . Substitution into equation (2.77) and (2.78) then 

gives 1+nu&&  and 1+nu& , respectively. To begin the integration, 0u , 0u& , and 0u&&  must be 

known. Two of these, usually the initial displacement and the initial velocity, will be 

given; the third can be determined by using the equation of motion written at 0=t . For 

an N-degree-of-freedom system, equation (2.77) to (2.78) can be rewrite as follows: 

[ ] [ ] [ ] [ ] [ ]{ }nnnnn uhuu
h

uu &&&&& −−+−= ++ 121
4  (2.80) 

[ ] [ ] [ ] [ ]{ }nnnn uu
h

uu −+−= ++ 11
2

&&  (2.81) 

A third relationship is obtained from the equation of motion written at time point 1+n : 

[ ][ ] [ ][ ] [ ][ ] [ ]1111 ++++ =++ nnnn puKuCuM &&&  (2.82) 
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Substitution for [ ]1+nu&  and [ ]1+nu&&  from equation (2.80) and (2.81) in equation (2.82) 

gives 
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Equation (2.83) is solved for [ ]1+nu  and the resulting value is substituted in equation 

(2.80) and (2.81), respectively, to obtain [ ]1+nu&&  and [ ]1+nu& . It will be noted that the 

solution for [ ]1+nu  requires factorization of [ ]K . The average acceleration method is 

unconditionally stable and is therefore suitable for direct integration of the equations of 

motion of systems with a large number of degrees of freedom. 

2.13 Parallel Substructure Method 

Parallel substructure method has been one of the most popular approaches for 

parallel finite element computations. Based upon the direct method, parallel substructure 

method is suitable for not only linear but also nonlinear structural analysis for its 

robustness on ill-conditioned problems. In addition, substructure method is usually used 

for finite element analysis with adaptive method refinement or local nonlinearities, 

out-of-core finite element analysis, or cooperative design analyses among different teams. 

The method first partitions the structure into a number of non-overlapping substructures 

and assigns each substructure to a separate processor. Each processor then forms its 

substructure equilibrium equations: 
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in which ][K  is the stiffness matrix; }{u  is the displacement vector; }{ f is the 

external force vector; the subscript k denotes the thk  substructure; the subscripts I and E 

denote the internal and interface degrees-of-freedom, respectively. Then, static 

condensation of substructure interior degrees-of-freedom is performed independently and 

concurrently within each substructure without any inter-process communication as 

expressed by the following two equations: 

kIEkIIkEIkEEk KKKKK ][][][][][ 1−−=  (2.85) 

kIkIIkEIkEkE fKKff ][][][][][ 1−−=  (2.86) 

The condensed system of each substructure is then assembled to form a set of global 

equations for the unknowns along the substructure interfaces and the solution of the 

global system of equations is performed as follows: 
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gEgEEgE fKu ][][][ 1−=  (2.89) 

in which the subscript g denotes the global system; the matrix kB][  is the Boolean 

matrix for mapping the degrees-of-freedom from the substructure k to the global system. 

Finally, the internal degrees-of-freedom of each substructure are solved concurrently 

within each processor as follows: 

gE
T
kkE uBu ][][][ =  (2.90) 

( )kEkIEkIkIIkI uKfKu }{][}{][][ 1 −= −  (2.91) 
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The scheme for the parallel substructure method implemented in our parallel source code 

for the finite element analyses is shown in Fig. 2.12. In addition, the modified 

decomposition algorithm developed by [118] is used for the static condensation of the 

substructure interior degrees-of-freedom. 

Because the concepts of the substructure method for solving the equilibrium 

equations are very similar to the multi-frontal method for solving a linear system 

[117,119], the parallel finite element analysis using the substructure method can be seen 

as a type of multi-frontal method special for finite element analyses. One of the major 

differences between the substructure method and the multi-frontal method is that the 

former one uses element as the basic unit for mesh partitioning, while the latter one 

usually uses degree-of-freedom as the basic unit. The major advantage of using ‘element’ 

as the basic unit is that, theoretically, it requires less operation on mesh partitioning and 

load balancing because the number of elements is usually much fewer than the number of 

degree-of-freedom. 
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Fig. 2.1 Cartesian frame 

 
Fig. 2.2 Lennard-Jones pairwise intermolecular potential 
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Fig. 2.3 Periodic boundary conditions 

 
Fig. 2.4 Cell link list method
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Fig. 2.5 Verlet list method 

 
Fig. 2.6 Cell link list combined verlet list method
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Fig. 2.7 A sketch of atomic decomposition algorithm 

 
         ( a ) In global xyz system              ( b ) In local rst system 

Fig. 2.8 A hexahedron element with 8 nodes 

 
Fig. 2.9 A tetrahedral element by using collapsing hexahedron element 
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       ( a ) In global xyz system                  ( b ) In local rst system 

Fig. 2.10 A tetrahedral element with 6 nodes 

 
Fig. 2.11 Average acceleration method 

 
Fig. 2.12 A scheme for the parallel substructure method in FEM
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Chapter 3 Nanoindentation for Simulation and Experiment 

3.1 Simulation Set Up of Crystal Ni Metal Orientation Surfaces 

The simulated models consist of (100), (110), and (111) crystallographic orientation 

surfaces and three mono-crystalline nickel substrates. The dimensional scales of the 

simulated models are approximately 125 Å×125 Å×155 Å. The simulated functions 

consist of the rigidity, thermostat, and Newtonian functions from the method utilized by 

Jeng et al [122]. The rigidity atoms at the fixed bottom layers of substrate are assumed to 

be unaffected by the tip during the indentation process. Therefore, they are fixed in their 

initial atomic positions so as to maintain the complete frame for the simulated model. 

Periodic boundary conditions are used in the transverse x and y directions, which 

represent the infinite boundary of the substrate. The sharp tip of the indenter has a conical 

shape with a diameter of 6 nm and height of 3 nm. To acquire the most efficient 

calculations, the tip atoms also are assumed to be the same as the rigidity atoms; however, 

the tip atoms’ indentation velocity is given by the displacement-rate at each time step of 

the simulation for the force interaction between the tip and the substrates. 

The motions of thermostat atoms are modified based on Nosé-Hoover thermostat 

[123], which sets up a heat bath that controls the temperature of Newtonian atoms to 

ensure the average temperature is at the desired value. The motions of all Newtonian 

atoms are determined by the interatomic forces derived by the interaction potential. The 

rigidity atoms of the nickel substrate are arranged as the fixed bottom layers, and the 

thermostat atoms are arranged on top of the fixed bottom layers. Meanwhile, the 

Newtonian atoms of the nickel substrate at the top region are bound by the thermostat 

atoms and are free to move by the influence of the tip atoms. The indenter tip is 
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positioned on the top of the substrate surface at the center, held at a constant distance 

from the substrate before the commencement of the indentation process. Because the 

three substrates are composed of more than 140,000 nickel atoms in each simulated 

model, we implement parallel computations by using the atom decomposition method 

[99]. The configurations of the simulated model are shown in Fig. 3.1. 

In the present MD simulations, the interatomic force derived from the potential 

function is described by the tight-binding potential as follows: 
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where the subscripts i and j represent atom i and atom j, respectively, ξ  is an effective 

hopping integral, rij is the distance between atoms i and j, and r0 is the first-neighbors’ 

distance. The total band energy is characterized by the second moment of the d-band 

density of state and is shown in the first part of the potential function. Meanwhile, the 

second part reveals a modified form of the original tight-binding potential. The free 

parameters of A,ξ , p and q are fitted to the experimental values of cohesive energy, 

lattice parameters (by the constraint on the atomic volume), and independent elastic 

constants for each pure system and for alloys. The interaction force Fi on atom i is 

derived from the equation (3.1), can be expressed as 
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where im  is the mass of atom i, r is the position of atom i, and N is the total number of 

atoms. By using equation (3.2), the resultant forces of each individual atom can be 

calculated at each time step. The parametric values of the tight-binding potential for the 
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present simulation models are adopted from Cleri et al [124]. 

MD simulations of nanoindentation comprise the equilibrium and indentation stages. 

In the equilibrium stage, the tip and the substrate surface are first positioned 10 Å apart in 

order to avoid the effect of attractive force which occurs as they gradually approach each 

other. The initial positions of tip and substrate atoms are prescribed in accordance with 

their crystalline structures, respectively. The initial velocities are assigned from a 

randomized producer, and are adjusted according to the rescaling method [123] in order 

to achieve a constant system temperature. After being held at the initial position for a 

period of time, both the tip and substrate are relaxed to their equilibrium configuration as 

a result of the interatomic forces acting on each individual atom. In the second 

indentation stage of MD simulations, the indentation is modeled by moving the tip 25 Å 

downward at a constant speed of 5 m/s, and then retracting the tip back to its original 

position at the same speed. In both stages, the time integration of motion is performed by 

applying the velocity-Verlet algorithm [123] to the corresponding data obtained in the 

previous step in order to derive the new position and velocity vectors of the substrate 

atoms. The system temperature of simulated models is kept at 300 K during the entire 

process. The size of the incremental time steps employed in the computations must be 

smaller than the thermal motion periods in the simulated system, but not so small as to be 

affected by the accumulations of inevitable round-off errors during the computational 

process. In the present computations, a compromised choice of time step Δt=1 fs is thus 

employed. 

It should be noted that nanoindentation experiments are performed at much slower 

rates than MD simulations (10-6 to 10-9 m/s); however, if conducted at these rates, MD 
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simulations would take extremely long processing times even with the fastest 

microprocessors [41]. Due to computing power limitations, the speeds of the indenter tip 

reported in the references are on an order of 1-100 m/s for most MD simulations of 

nanoindentation [125]. Although the indentation speed in our simulations is several 

orders of magnitude higher than typical experimental values, it is sufficiently slow to 

allow equilibrium of the indentation system, and allow any excess energy arising from 

the motion of the indenter to dissipate by means of Nosé-Hoover thermostat, which 

permits the indentation system to become a quasi-static state at each time step during 

nanoindentation [126]. Nevertheless, the sensitivity of the simulated results to the 

indentation velocity must be considered before the simulated and experimental results 

can be directly compared. A number of studies have attempted to do so. Liang et al [127] 

performed MD simulations to study dislocation nucleation in the initial stage during 

nanoindentation. With respect to the influence of indenter velocity on the dynamic effect 

of the material indentation behavior, they found that a higher indentation velocity in MD 

simulation leads to a higher strength, while the relationship between applied load and 

indentation depth shows little change. At the same time, the ensuing dislocation structures 

do not differ substantially. More importantly, the indentation curves for different 

velocities will quickly converge as the velocity decreases and approaches approximately 

3 m/s. In fact, no obvious difference is apparent when the velocity is below 3 m/s. This 

discovery can be understood from the research of Yamakov et al [128], which uses MD 

simulations to investigate the dislocation processes in the deformation of nanocrystalline 

aluminum. They found that the typical dislocation-glide velocities of FCC 

nanocrystalline aluminum are about 500 m/s under strain rates of 107 s-1 in the [100] 
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direction, which are well below both the velocity of sound at about 3,664 m/s, and the 

experimental value of 3,050 m/s. Moreover, Fang et al [129] utilized MD simulation to 

analyze the indenter velocity effects on a single crystal copper substrate. One of the 

results for the effect of indenter velocity on material properties reveals that the critical 

velocity of the indenter necessary to cause an increase in Young’s modulus and in 

hardness is about 80 m/s. The above-mentioned references suggest that the indenter 

velocity of 5 m/s adopted in our simulations is suitable to observe and describe the plastic 

deformation behavior and the material properties under nanoindentation. 

3.2 Simulation Set Up of Multiscale Crystal Ni Metal 

3.2.1 The Multiscale Model of Nanoindentation 

In describing the present hybrid scheme, it is helpful to use the initial configuration 

of the hybrid simulation of nanoindentation. The simulated model of the indentation 

problem along with the arrangement in the present simulation is shown in Fig. 3.2. The 

simulated models consist of both a sharp rigidity tip of indenter and the nickel substrate. 

The sharp tip of the indenter has a conical shape with a diameter of 6 nm and height of 3 

nm, and the dimensional scales of the nickel substrate are approximately 150 Å×150 

Å × 200 Å. As shown in Fig. 3.2, the simulation system of nickel substrate is 

geometrically decomposed into three dynamic regions: the atomistic molecular dynamics 

region (MD); the finite element region (FE); and the MD/FE handshake region (HS). In 

Fig. 3.2(b), the blue is the rigidity atoms, the red are the composite atoms/nodes 

constituting the HS region between MD and FE, the yellow above the HS region are the 

MD atoms, and the yellow below the HS region are the FE nodes. The region close to the 
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indentation site is simulated with the atomistic MD resolution, representing the 

mono-crystalline nickel of (100) crystallographic orientation surface, while the remaining 

regions are simulated with the continuum FE resolution, representing the mesh grids of 

nickel material. The connection between the MD and FE regions is depend on the HS 

region, in which the FE mesh is refined down to the atomic scale in such a way that each 

FE node coincides with an MD atom. Continuum FE is used to efficiently describe large 

parts of the system that are elastically deformed but do not include highly strained or 

broken bonds. Closer to the indentation zone, as the strains become larger and the 

continuum description becomes less accurate, atomistic MD which requires a selected 

empirical many-body potential is adopted to provide a computationally fast atomic 

description. Note that not the entire regions of the multiscale model are shown in Fig. 3.2 

since the extent of the present model is too large. 

In the course of calculations at each time step, the MD calculations apply to the MD 

and the HS regions, whereas the FE calculations apply to the FE and the HS regions. A 

Hamiltonian is defined for the entire system. Its degrees of freedom are atomic positions 

r and their velocities r&  for the MD region, and displacements u and their time rates of 

change u&  for the FE region. Equations of motion for all the relevant variables in the 

system are obtained by taking the appropriate derivatives of this Hamiltonian. All 

variables can then be updated in lockstep as a function of time step using the same 

integrator. Thus, the entire time history of the system can be obtained numerically given 

an appropriate set of initial conditions. Following the uniform trajectory dictated by this 

Hamiltonian will result in a conserved total energy. In order to achieve a controlled 

comparison, two systems are prepared, subsequent to the above schedule. In one system, 
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the original multiscale system is kept, whereas in the other system we replace the portion 

of the substrate below the HS by a MD system, i.e., the entire nanoindentation model is 

described by a full MD simulations. Both systems are performed according to the same 

schedule described above. There are several details of the implementation specific to the 

nanoindentation simulations of nickel substrate that we describe below, as appropriate. 

3.2.2 MD/FE-HS Region 

To effectively combine the regions described by the MD and FE methods into a 

single model, one not only has to ensure consistency between the properties of the 

discrete and continuum media, but also to provide a smooth handshake between the two 

media. In the present work, the coupling of the two descriptions of the media is brought 

about by a HS region, in which the FE nodes coincide with the positions of the particles 

in the MD region, as shown in Fig. 3.3. Two-dimensional views of the HS region and its 

surroundings from MD and FE regions are represented as the multiscale model. Note that 

not all of the MD and FE regions are shown in Fig. 3.3 since their extent is too large. In 

Fig. 3.3, on the above side of the HS region is the atomistic region in which every atom is 

explicitly represented by the nickel crystalline lattices. On the below side of the HS 

region, there is a FE mesh with its associated nodes. Within the HS region, the MD 

crystalline lattices and the FE mesh grids are overlapped, yielding a one-to-one 

correspondence between MD atoms and FE nodes although not all atom sites are nodal 

positions. Moving away from the HS region on the continuum side, the FE nodes become 

increasingly sparse and the corresponding elements become larger so as to always 

completely fill the physical space. The particles belong to the MD part that are governed 

by the interaction via the interatomic potential, yet are governed by the continuum linear 
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elasticity theory if the particles belong to the FE part. 

For these hybrid atom/node particles, the weighted function of an average 

Hamiltonian proposed by Lidorikis et al. [69,84] is utilized in the present simulations. 

Formally, a total hybrid Hamiltonian can be written as follows: 
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where N , Ne , and Nne are the number of total particles, elements, and nodes per element, 

respectively. im  corresponds to both atomic and nodal masses, ijΦ  is the many-body 

potential terms used in MD, and u l , k k  are the FE displacement vector and stiffness 

matrix, respectively, for element l. The tight-binding potential for nickel involves only 

short range interactions; therefore, two bi-layers of Ni (100) depicted as L1 and L2 in Fig. 

3.3 are sufficient to make up the HS region. In the present multiscale model, the 

following weights in the hybrid scheme to be the most accuracy as compared with the full 

MD simulations are as follows: 
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By the use of equation (3.3) and (3.4), it can be successful to merge seamlessly between 

MD and FE in the multiscale model since it exhibits the numerical stability during the 

computational process. 
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3.2.3 Molecular Dynamics 

In the MD part of our multiscale model, the motions of all Newtonian atoms are 

determined by the interatomic forces derived by the interaction potential. For the 

dynamic responses of MD, the time integration of atomic motion is performed by 

applying the velocity-Verlet algorithm [123] to the corresponding data obtained in the 

previous step in order to derive the new position and velocity vectors of the substrate 

atoms. The atomic thermostat are modified based on Nosé-Hoover thermostat [122], 

which sets up a heat bath that controls the temperature of Newtonian atoms to ensure an 

average temperature maintained at the desired value. The atoms of the nickel substrate 

are arranged by the nickel crystalline lattices in the MD and HS regions in order to move 

by the influence of the tip atoms. The initial velocities are assigned from a randomized 

producer, and are adjusted according to the rescaling method [123] in order to achieve a 

constant system temperature. Periodic boundary conditions are used in the transverse x 

and y directions, which represent the infinite boundary of the substrate. The indenter tip 

is positioned on the top of the substrate surface at the center, held at a constant distance 

from the substrate before the commencement of the indentation process. Because the 

substrate of MD part is composed of more than 140,000 nickel atoms in the simulated 

model, we implement parallel computations by using the atom decomposition method 

[99]. In the present multiscale simulations of MD part, the potential function and the 

interatomic force is described by the same as equation (3.1) and (3.2). 

3.2.4 Finite Element Method 

In the FE part of our multiscale model, the continuum elastic energy is integrated 

over the entire volume of the sample by placing a mesh over the system. Therefore, the 
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distortions from equilibrium are relatively small and linear elasticity is sufficient to 

describe them. In this region, the equations of linear continuum elasticity are solved on a 

computational grid. The interpolation function can be used within each element of the 

mesh nodes to determine the displacement field everywhere. The kinetic energy integral 

is handled similarly. For the dynamic responses of FE, the time integration of nodal 

motion is performed by applying the average acceleration method [130] to the 

corresponding data obtained in the previous step in order to derive the new position and 

velocity vectors of the substrate nodes. 

For the consideration of the computational cost, it is necessary to estimate whether 

the multiscale model will influence the simulated results of nanoindentation for the 

adoption of two-dimensional (2D) or three-dimensional (3D) models of FE. From the 

literature survey for the multiscale research, we found that there are several researches to 

adopt the 2D plane strain model of FE to couple MD in their mutiscale model of 

nanoindentation simulations, which include that Picu [64] utilized the quasicontinuum 

method to perform the nanoindentation simulations in the prototype BCC transition metal 

molybdenum (Mo) for the minimization of unwanted effects induced by the limited size 

of the specimen, Shenoy et al. [65] performed the plane strain nanoindentation using 

atomistic simulations as well as analytic models to determine a nucleation criterion for 

dislocation nucleation as compared with the results of the atomistic lattice statics by 

using the quasicontinuum method, and Smith et al. [67] applied the local quasicontinuum 

method, extended to handle the complex crystal structures, to silicon nanoindentation. 

In the above-mentioned references, the results obtained from the multiscale model of 

nanoindentation all have a good agreement with the variation tendency of 
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nanoindentation. Furtherly, in the reference [67], Smith et al. also used both the 2D and 

3D FE meshes to couple MD in their multiscale models. The compared results obtained 

from the nanoindentation simulations between these two models indicate that there are no 

obvious differences under the avoidance of the substrate effect, i.e., the specific value of 

the indentation depth divided by the substrate thickness can not be exceeded 10% (0.1) 

[131]. Accordingly, we can know that it is suitable to adopt the 2D FE model to couple 

MD in our multiscale simulations under the avoidance of the substrate effect in order to 

obtain the maximum computation cost for the length scale expansion. Therefore, in our 

multiscale model of FE part, the nodes not constrained by boundary conditions or stuck 

to the indenter are free to move in the xz plane, but are not permitted to move in the y 

direction, i.e., plane strain conditions of FE. 

For this study, we use the quadrilateral elements of four nodes and the triangular 

elements of three nodes for grid coarsening with linear interpolation for the displacement 

field. Fixed boundary conditions are imposed on the bottom of the mesh, and periodic 

boundary conditions are imposed on the sides, perpendicularly to the indentation surface. 

For the constitutive relations, we use the elastic constants of nickel as determined from 

the tight-binding potential. We also use the lumped mass approximation, i.e., the mass is 

collapsed on the nodes instead of being uniformly distributed. This approximation has 

been shown to be more appropriate for small atomic-size elements [55,77]. In order to 

cooperate with the application of parallel algorithm in MD part, there are more than 

15,000 mesh nodes in FE part also implemented by using the parallel computation of the 

parallel substructure method [118]. 

In the present simulations, the total elastic energy of a solid, for the undamped 
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system and in the absence of both tractions and body forces, is then given 
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where )(eT , )(e
pπ , and )(eS are the kinetic energy, the potential energy, and the surface of 

an element e, respectively; [ ]N , [ ]D  and [ ]B  are the matrix of interpolation function, 

material properties, and partial differentiation, respectively; Q&
r

 and Q
r

 are the nodal 

velocity and displacement, ρ  is the density value, and )(tPc

r
 is the vector of 

concentrated nodal forces of the structure. By using the Lagrange equations [105], we can 

derive the dynamic equations of motion of a structure for the undamped system, as 

follows: 

[ ] [ ] [ ] [ ][ ]

[ ] [ ] [ ]∑∑

∑ ∫∫∫∫

==

=

=⎟
⎠
⎞⎜

⎝
⎛ +

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

E

e
c

E

e

ee

E

e S

T

S

T

tPtQKtQM

tQdSBDBtQdSNN
ee

11

)()(

1

)()()(

)()(
)()(

rr&&r

r&&rρ
 (3.6) 

where [ ])(eM  and [ ])(eK  are the mass and stiffness matrices of an element e, and Q&&
r

 

is the nodal acceleration. Solve the equation of motion by applying the boundary and 

initial conditions. Equation (3.6) can be solved by using the techniques of a set of 

simultaneous linear differential equations for propagation problems. 

3.2.5 Nanoindentation Simulation 

The multiscale simulations of nanoindentation comprise the equilibrium and 

indentation stages. In the equilibrium stage, the tip and the substrate surface are first 
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positioned 10 Å apart in order to avoid the effect of attractive force which occurs as they 

gradually approach each other. After being held at the initial position for a period of time, 

both the tip and substrate are relaxed to their equilibrium configuration as a result of the 

interatomic forces acting on each individual atom. In the indentation stage, the 

indentation is modeled by moving the tip 25 Å downward at a constant speed of 5 m/s, 

and then retracting the tip back to its original position at the same speed. To acquire the 

most efficient calculations, the tip atoms also are assumed to be the same as the rigidity 

atoms; however, the tip atoms’ indentation velocity is given by the displacement-rate at 

each time step of the simulation for the force interaction between the tip and the 

substrates. The system temperature of simulated models is kept at 300 K during the entire 

process. The size of the incremental time steps employed in the computations must be 

smaller than the thermal motion periods in the simulated system, but not so small as to be 

affected by the accumulations of inevitable round-off errors during the computational 

process. In the present computations, a compromised choice of time step Δt=1 fs is thus 

employed. For the explanations of the high indentation speed used in our multiscale 

simulations of MD part as compared with the experimental conditions, we had elucidated 

the suitable factors as the above-mentioned descriptions in the section 3.1. 

3.3 Experiment Set Up of Crystal GaN Metal Semiconductor 

The GaN thin films (As shown in Fig. 3.5) used in this study were grown on 

(0001)-sapphire substrates by the metal-organic chemical-vapour deposition (MOCVD) 

method with an average thickness of about 2 µm. The detailed growth procedures of the 

GaN thin films can be found elsewhere [132]. The nanoindentation measurements were 

performed on a Nanoindenter MTS NanoXP® system (MTS Cooperation, Nano 
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Instruments Innovation Center, TN, USA, as shown in Fig. 3.6) with a diamond 

pyramid-shaped Berkovich-type indenter tip, whose radius of curvature is 50 nm. The 

mechanical properties (the hardness and Young’s modulus) of GaN thin films were 

measured by nanoindentation with a continuous stiffness measurements (CSM) technique 

[133]. In this technique, a small sinusoidal load with known frequency and amplitude was 

superimposed onto the quasi-static load. It results in a modulation of the indenter 

displacement that is phase shifted in response to the excitation force. The stiffness, S, of 

the material, and the damping, Cω , along indentation loading can be respectively 

calculated using equations (3.7) and (3.8) expressed below. The hardness and elastic 

modulus are, then, calculated by putting the obtained stiffness data into equations (3.9) 

and (3.10), respectively. In this way, the hardness and modulus as a function of 

penetration depth are determined for a single loading-unloading cycle [134]. 
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where maxP  and )(ωh  are denoted as the driving force and the displacement response 

of the indenter, respectively; Φ  is the phase angle between maxP  and )(ωh ; m is the 

mass of the indenter column; SK  is the is spring constant in the vertical direction; fK  
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is frame stiffness; m, SK  and fK  are all constant values for the specified indentation 

system; ω  is angular speed which equals fπ2  ; f is the driven frequency of the ac 

signal of 45 Hz for this work, which is used to avoid the sensitivity to thermal drift; the 

load resolution of the system was 50 nN; v is Poission’s ratio and set to be 0.25 [132] for 

current analysis; and cA  is the contact area when the material in contact with indenter 

being loaded at maxP . 

The area function, which is used to calculate contact area, Ac, from contact depth, 

ch , was carefully calibrated by using fused silica as the standard sample prior to the 

nanoindentation experiments. The nanoindentation tests were carried out in the following 

sequence: first of all, the Berkovich indenter was brought into contact with the surface at 

a constant strain rate of 105.0 −s
 
until 100 nm of penetration was achieved. The load was 

then held at the maximum value for 30 s in order to determine the creep behaviour. The 

Berkovich indenter was then withdrawn from the surface at the same rate until 10% of 

the maximum load was reached. This constant strain rate was chosen such that the 

strain-hardening effect could be avoided during the measurements. At least 10 indents 

were performed on each GaN film. The nanoindentations were sufficiently spaced to 

prevent mutual interactions. The hardness and Young’s modulus of GaN films obtained 

from the present nanoindentation tests with CSM technique are 19.31 ±  1.05 GPa and 

286.12 ±  25.34 GPa, respectively. As displayed in Table 4-1, which summarizes the 

hardness and Young’s modulus for various GaN samples obtained from different 

indentation methods [135-138], the values obtained by using Berkovich indenter are 

somewhat larger than those obtained by other methods. Nonetheless, the current data are 

consistent with our previous studies [132], indicating the reproducibility of the technique. 
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Furthermore, in order to reveal the role played by the nucleation and propagation of 

dislocations in indentation-induced deformation, cyclic nanoindentation tests were also 

performed in this study. These tests were carried out by the following sequences. First, 

the indenter was loaded to some chosen load and then unloaded by 90% of the previous 

load, which completed the first cycle. It then was reloaded to a larger chosen load and 

unloaded by 90% for the second cycle. Fig. 3.9 illustrated a typical cyclic indentation test 

repeated for 5 cycles. It is noted that in each cycle, the indenter was held for 30 s at 10% 

of its previous maximum load for thermal drift correction and for assuring that complete 

unloading was achieved. The thermal drift was kept below ±0.05 nm 1−s
 
for all 

indentations considered in this study. The same loading– unloading rate of 10 mN 1−s
 
was 

used. 

After indentation to a maximum load of 200 mN, the cross-sectional transmission 

electron microscopy (TEM, as shown in Fig. 3.7) samples of the GaN films were 

prepared by the lift-out technique using a dual-beam FIB station (FEI Nova 220, as 

shown in Fig. 3.8). The technique for sample preparation using the FIB consisted of first 

milling two crosses alongside the indented area, serving as makers, and then depositing a 

layer of Pt (about 1 µm thick) to protect the area of interest from damages and 

implantation by the injected Ga
+ 

ion beam. Material was removed from both sides of the 

selected area using an ion current of 5 nA, followed by successive thinning steps by 

reducing the ion current progressively from 3 nA to 300 pA until the foil was about 1 µm 

thick. Subsequently, the bottom and one side of the foil were cut free while tilting the 

sample at an angle of 45
◦ 
to the ion beam. A central area containing the indentation apex 

of a few micrometres in length was then chosen and thinned further to a thickness of 100 
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nm, leaving the side thicker areas relatively intact to prevent the foil from collapsing. 

Finally a small area of interest was selected and thinned until electron transparency was 

achieved. The FIB milling procedures are displayed in Fig. 3.10. The transfer of the 

sample from the sample holder to the TEM grid with a carbon membrane was made ex 

situ using the electrostatic force of a glass needle. The TEM samples were examined in 

JEOL-2010F TEM operating at an accelerating voltage of 200 kV. 
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Table 3-1 Mechanical properties of GaN thin films derived from various 
measurement methods 



 61

 
( a ) 

 
( b ) 

Fig. 3.1 Simulated nickel models of both the material and functional configurations. 
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( a ) 

 
( b ) 

Fig. 3.2 Multiscale Simulation models of nickel substrate of both the material and 
functional configurations. 
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Fig. 3.3 Close-up of the HS region and its surroundings in the nickel substrate 
showing 2D views from two different directions. 

a=Lattice Constant
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Fig. 3.4 The high performance computer (HPC). 
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Fig. 3.5 The experimental samples of GaN thin films. 

 
( a ) 

 
( b ) 

Fig. 3.6 Nanoindenter (MTS NanoXP® Nanoindenter).



 66

 

Fig. 3.7 The transmission electron microscopy (Jeol JEM-2100F TEM). 

 

Fig. 3.8 Focused ion beam (FEI Nova 220 FIB). 
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Fig. 3.9 Typical cyclic nanoindentation load–displacement curves for GaN thin films 
obtained with a Berkovich indenter. 
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Fig. 3.10 Illustration of the typical procedures for FIB milling sample preparation. 
Sample preparation starts with a line of nanoindentations. 
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Chapter 4 Results and Discussions 

4.1 The Nanoindentation Characteristics of Crystal Ni Metal Orientation Surfaces 

4.1.1 Plastic Deformation Characteristic during Nanoindentation 

The indentation curves of the tip force and the indentation depth for three nickel 

substrates with different crystallographic surfaces of (100), (110), and (111) orientations 

are shown in Fig. 4.1(a)-(c). The vertical axis represents the value of the tip force, defined 

as the resultant force at the indenting direction exerted upon the tip by nickel atoms, and 

the horizontal axis represents the indentation depth. The height of the tip is set to zero 

indentation depth when the atoms of the tip start interacting with the nickel atoms of the 

substrate. The positive and negative values of the tip force represent the repulsive and 

attractive force between the tip and the nickel substrate, respectively. For each 

crystallographic surface, because the interaction between two atoms is attractive as they 

gradually approach each other, the tip force is negative in the beginning of the indenting. 

As the tip increases its indentation depth into the surface, attractive force will convert into 

repulsive force. 

In Fig. 4.1, it is clearly evident that in the course of the indenting process, the value 

of the tip force imposed on the nickel (100) substrate varies more significantly, while the 

values of tip forces exerted on nickel (110) and (111) substrates appear to monotonically 

increase with the indentation depth. For convenience in describing the variations of tip 

force with the indentation depth in Fig. 4.1, labels (1) to (18) are used to explain the 

characteristic variations of the indentation curves. Each label marks the characteristic 

indentation depth at which the tip force displays relatively obvious variation. The 
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corresponding morphologies, as well as the distributions of atomic normal stress on 

indentation direction at these labels are shown in Fig. 4.2 to Fig. 4.4. Because the 

coordination number of a nickel atom in a perfect FCC crystalline material is 12, nickel 

atoms with a coordination number lower than 12 under indentation are shown during the 

evolution of the deformation and relaxation of the substrates [139]. In addition, 

atomic-level stress is also used to monitor the evolution of the structure relaxation in Fig. 

4.2 to Fig. 4.4. The atomic stress is obtained from the following formula [140]: 
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where im  is the mass of atom i; iV  is the volume surrounding to atom i; RN  is the 

number of particles contained in region R, where R is defined as the region of atomic 

interaction; ijr  is the distance between atoms i and j; and m
ijr  and n

ijr  are two 

components of the vector from atom i to j. The first term of the bracketed section of 

equation (4.1) represents the kinetic effect associated with atomic motion, and will be 

affected by temperature. The second term is related to the interactive forces and the 

distance between the atoms. Vi is also named Voronoi volume, constructed by the 

perpendicular planes which bisect the lines between atom i and all its neighbor atoms. 

However, it is time-consuming to obtain the Voronoi volume of each atom, so Srolovitz 

[141] has used the following formulation to obtain a sphere whose volume is equal to the 

original Voronoi volume, namely, 

ii aV
3

4π=  (4.2) 

where ia  is the average radius of atom i, and jir  is the distance between atoms i and its 
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neighbor atom j. 

Fig. 4.2(a)-(f) depict the morphologies of nickel atoms with a coordination number 

lower than 12, and which correspond to the morphologies at different indentation depths 

on the (100) surface, marked as labels (1)-(6). The morphologies at labels (1), (3), and (5) 

are located at the local peaks of the (100) indentation curve, while those at labels (2), (4), 

and (6) are at local minimums of the tip forces. The tip force will decrease when the 

indentation depths increase from label (1) to (2), label (3) to (4), and label (5) to (6), 

because the strain energy of the substrate due to the force exerted by the tip will be 

released by the dislocation-sliding along the {111} plane. After the release of strain 

energy, the indentation curve continues to rise after crossing the local minimums until the 

deformation energy of the next stage is released again. 

As shown in Fig. 4.2(a), (c) and (e), the atomic arrangements display the 

homogeneous nucleation phases. Because Fig. 4.2(a) occurs at the shallow indentation 

stage, the formation size of nucleation is not significant in size. With the increase of 

indentation depth, as shown in Fig. 4.2(c) and (e), more nickel atoms nucleate around the 

tip, which leads to the formation of a larger nucleation. According to the stress legend in 

Fig. 4.2(a), (c) and (e), the nucleated atoms around the tip reveal repulsive stresses. The 

atomic normal stresses increase with the indentation depth, in that the maximum atomic 

stresses in Fig. 4.2(a), (c) and (e) for indentation depths of 5.1 Å, 9.2 Å, and 13.3 Å are 

about -0.06 GPa, -0.09 GPa and -0.11 GPa, respectively. In contrast, the atomic 

arrangements in Fig. 4.2(b), (d) and (f) display the phases where dislocation from the 

nucleation phase takes place. In Fig. 4.2(b), because the indentation depth into the nickel 

substrate by the tip is not sufficient, the areas of the sliding planes are relatively small. 
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With increase of the indentation depth, as shown in Fig. 4.2(d) and (f), the dislocation 

defects gradually enlarge, which results in larger areas of sliding planes. From the 

displays of the stress legend in Fig. 4.2(b), (d) and (f), it can be seen that the distributions 

of the atomic normal stress values on the {111} sliding planes are close to the zero value 

after the relaxation period, where strain energy is released. 

Fig. 4.3(a)-(f) and Fig. 4.4(a)-(f) also depict the morphologies of nickel atoms with 

the coordination number lower than 12, and which correspond to the morphologies at 

different indentation depths on both (110) and (111) surfaces at labels (7)-(12) and labels 

(13)-(18), respectively. The morphologies at labels (7), (9), and (11) are located at the 

local peaks of the (110) indentation curve, while those at labels (8), (10), and (12) are at 

local minimums of the tip forces. Similarly, the morphologies at labels (13), (15), and (17) 

are located at the local peaks of the (111) indentation curve, while those at labels (14), 

(16), and (18) are at local minimums of the tip forces. Fig. 4.1 shows the decrease in tip 

force from the local peaks to the local minimums between labels (7) and (8), labels (9) 

and (10), and labels (11) and (12); as well as labels (13) and (14), labels (15) and (16), 

and labels (17) and (18). This because the strain energy of the substrate due to the 

exertion of the tip is released by the dislocation along the {111} sliding plane. 

The strain energy can be examined in further detail in Fig. 4.3 and 5.4. As previously 

noted, in Fig. 4.3(a), (c), and (e), the atomic arrangements display the homogeneous 

nucleation phases, and the formation size of nucleation increases with the increase of 

indentation depth. The nucleated atoms around the tip reveal the repulsive stresses, and 

the atomic normal stresses increase with the increase of indentation depth. The maximum 

atomic stresses in Fig. 4.3(a), (c), and (e) are about -0.08 GPa, -0.11 GPa and -0.12 GPa. 
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In Fig. 4.3(b), (d), and (f), the atomic structures display the dislocation defect phases, and 

the areas and quantities of the sliding planes increase with the increase of indentation 

depth, while the distributions of the atomic normal stress values on the {111} sliding 

planes in Fig. 4.3(b), (d), and (f) are close to the zero value. In Fig. 4.4(a)-(f), the 

deformation evolution and atomic stress state of the (111) substrate during indentation are 

similar to Fig. 4.2(a)-(f) and Fig. 4.3(a)-(f). The maximum values of atomic stress in Fig. 

4.4(a), (c), and (e) are about -0.09 GPa, -0.11 GPa and -0.12 GPa, while the distributions 

of the atomic normal stress values on the {111} sliding planes in Fig. 4.4(b), (d), and (f) 

are close to the zero value. From the previously mentioned results shown in Fig. 4.2 to 

Fig. 4.4, the plastic deformation characteristics corresponding to the distributions of 

atomic normal stress illustrate that the strain energy of the substrate exerted by the tip is 

stored by the formation of the homogeneous nucleation in one phase, and is dissipated by 

the dislocation sliding of the {111} plane in the following phase. 

Furthermore, the series of drop phenomena during nanoindentation found in the 

three indentation curves in Fig. 4.1 correspond to the dislocation nucleation patterns 

presented in Fig. 4.2 to Fig. 4.4, and which conform to the related research of MD 

simulations for the FCC single crystal metals of nanoindentation [126,142-145]. These 

patterns are identified in the (100) surface orientation substrate as prismatic dislocation 

loop [142], and in the (111) surface orientation substrate as the dislocation defects of the 

tetrahedral sessile lock [126], the three-fold symmetry dislocation [143-144] or the three 

unique {111} sliding planes [145]. Finally, because of different orientation surfaces in the 

three nickel substrates, the numbers of slip angles of {111} sliding planes in the three 

nickel substrates are different. The numbers of slip angles for the three nickel substrates 



 74

can be calculated from Wulff net projection [146]. The slip angle of {111} sliding planes 

in the (100) substrate is 54.7°, and the slip angles of {111} sliding planes in the (110) 

substrate are 35.3° and 90°, while the slip angles of {111} sliding planes in the (111) 

substrate are 0°, 70.5° and 109.5°. From these results of slip angle numbers of {111} 

sliding planes in the three nickel substrates corresponding to the trend variations of the 

indentation curves, it can be found that the steep variations of the indentation curve from 

the local peaks to the local minimums are affected by the numbers of slip angles of the 

{111} sliding plane. Because the steep variations of the indentation curve are related to 

the plastic deformation ability of the material substrates during nanoindentation, the steep 

variations of the three indentation curves in Fig. 4.1 decrease when the numbers of slip 

angles of the {111} sliding plane increase in the three nickel substrates. This indicates 

that the (111) nickel substrate exhibits more dislocation activity owing to the maximum 

number of three slip angles, and the (100) nickel substrate exhibits less dislocation 

activity due to the minimum number of only one slip angle, with the dislocation activity 

of the (110) nickel substrate between the (111) and (100) nickel substrates as a result of 

two slip angles. 

4.1.2 Pile-up Patterns after Nanoindentation 

The actual contact area between the tip and the specimen is determined by the shape 

of the out-of-plane displacement zone, which will affect the quantitative analysis of the 

material property measurements. Therefore, the pile-up patterns produced after 

nanoindentation are also observed in the present MD simulations. As shown in Fig. 4.5, 

the MD simulations show different surface profiles around the simulated tip for the three 

different surface orientations of nickel substrates. The MD simulated contour plots of the 
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out-of-plane displacement profiles display the pile-up patterns on the surface of the 

(100)-, (110)- and (111)-oriented surfaces. The MD simulated contour maps for the 

hillocks of pile-up patterns in Fig. 4.5 (a), (b) and (c) display a crisscross of two-fold 

symmetry for the (100)-oriented crystal, an edge formed by two meeting points of the 

two-fold symmetry for the (110)-oriented crystal, and a hexagon of three-fold symmetry 

for the (111)-oriented crystals, respectively. The pile-up contour maps for the three 

crystallographic nickel substrates in Fig. 4.5 show that the pile-up dislocations are 

significantly affected by different surface orientations. For nickel materials, Huang et al 

[147] utilized micro-indentation to investigate the surface deformation mode of a NiTi 

shape-memory alloy after the indentation and a subsequent thermal cycle. In addition, 

Barshilia et al [148] employed low-angle x-ray diffraction and atomic force microscopy 

(AFM) to study structural characterization and nano-hardness measurements on Cu/Ni 

multilayer coatings. The results in references [147] and [148] reveal that the pile-up 

patterns of the nickel-based material are visible around the indentation surface under 

nanoindentation, with the resultant indents “piling-up” above room temperature, and 

“sinking-in” at low temperatures. Corresponding to the pile-up investigations of 

references [147] and [148], our results show that the pile-up of nickel materials are 

produced by the tip around the indentation surface after indentation, which further 

confirms our present simulations, which are modeled at room temperature. 

In order to further verify the simulated pattern accuracy, the pile-up patterns of the 

present simulations for the three crystallographic nickel substrates are compared with the 

research literature for both finite element method (FEM) simulations and experimental 

tests [40]. Fig. 2 of reference [40] shows FEM simulation contour plots of the 
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out-of-plane displacement profiles on (100)-, (110)- and (111)-oriented surfaces for single 

crystal copper samples. Similarly, Fig. 3 of reference [40] shows the atomic force 

microscopy (AFM) images for experimental nanoindentation tests on the same 

orientation crystallographic surfaces and the same single crystal copper material. A 

comparison of pile-up patterns in the present simulations to reference [40] shows that the 

contour shape of the MD simulation is similar to both the FEM simulation and 

experimental results. The differences for the detailed contour are attributable to the fact 

that the maximum indentation depth used in the present simulations is very shallow as 

compared with both Fig.2 and Fig. 3 of reference [40]. In addition, the small scale of 

pile-up patterns in MD simulations provides detail that is not present in FEM simulations 

and experimental tests. However, the pile-up patterns of the three nickel substrates in the 

present MD simulations are in good agreement with the FEM simulations and 

experimental tests in reference [40], which prove that the crystalline nickel materials 

demonstrate the pile-up phenomenon by nanoindentation on the nanoscale similar to the 

pile-up patterns of the bulk FCC materials on the micron-scale. 

Finally, because the hillocks and extensions of the pile-up pattern on the indentation 

surface represent a dislocation spreading of the materials, both the hillock heights and 

extension lengths of the pile-up pattern in Fig. 4.5 can provide more information about 

plastic deformation ability. First, the heights of the largest hillock around the edge of the 

indentation hole in Fig. 4.5 (a), (b) and (c) are about 1.6 Å, 2.7 Å and 3.2 Å, respectively, 

and are clearly visible from the pile-up patterns in Fig. 4.5. Secondly, the lengths of the 

longest extension perpendicular to the edge of indentation hole in Fig. 4.5 (a), (b) and (c) 

are about 2.7 Å, 4.6 Å and 5.7 Å, respectively, and are also clearly visible from the 
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pile-up patterns of Fig. 4.5. In the three crystallographic nickel substrates, the (111) 

surface orientation exhibits the most pile-up dislocation spreading, the (100) surface 

orientation exhibits the least, with the extent of pile-up dislocation spreading in the (110) 

surface orientation in between. These results are consistent with the results found in 

reference [41] by Komanduri et al, who found that the amount of plastic deformation and 

the pile-up dislocation of the aluminum substrate around the indenter during 

nanoindentation were observed to be at the maximum on the (111) surface orientation. 

While Komanduri et al’s study [41] provides pile-up details for the (111) orientation, our 

study presents not only the pile-up patterns for (100), (110), and (111) orientations, but 

also the corresponding indentation curves which display the effects of dislocation 

spreading. The fact that the (111) surface orientation exhibits more pile-up dislocation 

spreading can be seen in the numerous small variations on its indentation curve, as 

opposed to the steep variations found on the (100) and (110) indentation curves in Fig. 

4.1. 

4.1.3 Extracted Material Properties from Nanoindentation 

In order to further understand the influence of three crystallographic orientation 

surfaces on the mechanical properties, the formulations developed by Oliver [149] are 

used to calculate the hardness and Young’s modulus of the three crystallographic 

substrates. The Young’s modulus is first calculated by the reduced elastic modulus rE , 

which takes into account the combined elastic effects of indentation tip and substrates, as 

follows: 

A
SE r 2

π=  (4.3) 
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where E and ν  are the Young’s modulus and Poisson’s ratio with the subscripts s and i 

representing the sample and tip, respectively. The material properties of the tip used in 

this study are iE =1141 GPa and iν =0.07 [149-150]. The hardness is thus calculated 

from the equation below as follows: 

i

i

s

s

r EEE
)1()1(1 22 νν −+−=  (4.4) 

where E and ν  are the Young’s modulus and Poisson’s ratio with the subscripts s and i 

representing the sample and tip, respectively. The hardness is thus calculated from the 

equation below as follows: 
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where maxP  is the maximum load of the tip at the maximum depth, pA  is the contact 

area, ch  is the contact depth, and may be expressed as 

S
P

hhc
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max ⋅−= ε  (4.6) 

where ε  is the geometric constant of the tip. For the conical tip, it is given a value of 

0.72; for the flat punch, it is given a value of 1; and for the paraboloid of revolution, a 

value of 0.75. After the calculations to the hardness and Young’s modulus, the calculated 

results are compared with the values reported in literature, as shown in Table 5-1. 

The hardness values found in Table 5-1 for the (100), (110), and (111) nickel 

substrates obtained from our simulations at the maximum indentation depth 1.5 nm are 

16.7 GPa, 15.8 GPa and 15.1 GPa, respectively. Similarly, in other simulation research, 

the hardness value obtained from Saraev et al [142] using MD simulation of 

nanoindentation at the same indentation depth 1.5 nm is 14.8 GPa, whereas the hardness 
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values of nickel material obtained from nanoindentation experiments as reported in 

reference documents are in the range of 3.5 to 8.4 GPa [151-152,154-157]. Secondly, 

regarding the Young’s modulus values in Table 5-1, the values of the (100), (110), and 

(111) nickel substrates obtained from our simulations are 288.07 GPa, 264.51 GPa, and 

224.26 GPa, respectively. The Young’s modulus values of nickel material obtained from 

nanoindentation experiments as reported in reference literature are in the range of 164 to 

218 GPa [152-153,155,158]. As is evident, the hardness values of the three nickel 

substrates in our simulations are close to the hardness values produced in MD simulations 

under similar simulation conditions, yet higher than the experimental values as reported 

in the reference literature. Similarly, the Young’s modulus values of the present 

simulations for the three nickel substrates are also higher than the experimental values 

reported in the reference literature. The differences of both the hardness and Young’s 

modulus values between the experimental and the simulated results were attributed to a 

number of factors: the indentation size effect [41,142,159-162], the difference in 

specimen scale between experiment and simulation that results in a restriction of 

dislocation activity in MD simulations [163-165], the higher strain rate due to the higher 

indenter velocity in MD simulations as compared with experiments [129,166], the 

experimental scatter and surface roughness in experimental specimens [167], the true 

contact area value underestimation due to the pile-up phenomenon in MD simulations 

[161], and the different crystal texture between the perfect mono-crystalline used in MD 

simulations and experimental specimens which contain a variety of defects [162-165,168]. 

Although the material properties of both the hardness and Young’s modulus values in our 

simulations are higher than the experimental values of the reference documents, the 
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simulated values for the hardness and Young’s modulus obtained from our simulations are 

still within a reasonable range. 

Furthermore, the hardness values of the three crystallographic nickel substrates 

calculated from the present simulations show that the hardness value of the (100) 

substrate is greatest, while the hardness value of the (110) substrate is smaller than the 

(100) substrate, and the hardness value of the (111) substrate is smallest. This is due to 

the fact that the (100) substrate has only one slip angle of the {111} sliding planes that 

occur during nanoindentation, which leads to a lower ability for plastic deformation, and 

results in a higher hardness value. In contrast, because the (111) substrate has three slip 

angles of the {111} sliding planes that occur during nanoindentation, the (111) substrate 

exhibits a better ability for plastic deformation, which leads to a lower hardness value. 

The (110) substrate has two slip angles of the {111} sliding planes that occur during 

nanoindentation, so the ability for plastic deformation is between the (100) and (111) 

substrate values, which leads to a hardness value in between the (100) and (110) 

substrates. The (100) surface orientation of FCC materials exhibits the maximum 

hardness value for the three crystallographic surface orientations, also shown in the 

research previously mentioned [41]. The results in reference [41] for the influence of 

orientation effect on the hardness values reveal that the hardness of the (100) 

crystallographic aluminum substrate exhibits the maximum value under nanoindentation, 

and represents the least anisotropy on the [001] direction. The results in our simulations 

for the hardness value of the (100) nickel substrate in the three surface orientations are in 

accord with the results of reference [41]. Because the hardness values of the three nickel 

substrates correspond to the numbers of slip angle at the {111} sliding planes, the 
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different slip angles lead to different dislocation activity during nanoindentation. This 

indicates that the hardness of FCC nickel material on the nanoscale is significantly 

affected by crystallographic surfaces with different orientations. 

Finally, the Young’s modulus values of the three crystallographic nickel substrates 

calculated from the present simulations show that the Young’s modulus value of the (100) 

substrate is greatest, while the Young’s modulus value of the (110) substrate is smaller 

than the (100) substrate, and the Young’s modulus value of the (111) substrate is smallest. 

Because the Young’s modulus is only related to the capability for elastic deformation, the 

material’s resistance to elastic deformation at the moment of initial unloading is 

completely provided by the constitutional strength of atomic bonding. Therefore, a 

comparison of Young’s modulus for the three nickel substrates can be drawn from the 

average cohesive energy between nickel atoms, as shown in Fig. 4.6, with the horizontal 

axis representing the indentation depth, and the vertical axis representing the average 

value of cohesive energy for all atoms of the nickel substrate, defined as the atomic 

bonding strength between nickel atoms. In Fig. 4.6, it can be clearly seen that throughout 

the entire indentation process, the (100) substrate has the maximum value of cohesive 

energy, while the cohesive energy of the (110) substrate is smaller than the (100) 

substrate from the indentation, and the cohesive energy of the (111) substrate always 

maintaining the minimum value. The Young’s modulus values of the three nickel 

substrates have a proportional relationship to cohesive energy, which reveals that the 

elastic modulus of FCC nickel material on the nanoscale is significantly affected by the 

different crystallographic orientation surfaces. 
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4.2 The Nanoindentation Accuracy of Multiscale Crystal Ni Metal 

In this section, we illustrate the computational efficiency and accuracy of the 

combined MD and FE approach. We take nanoindentation as an investigation problem for 

assessing the performance of the coupled method, and confirm the accuracy of our hybrid 

model as compared with the results of full MD simulations. The present coupling method 

adopted from references [69,84] was first applied to the nanoindentation problem and 

compared against full atomistics on a problem sized to be accessible using atomistics. 

The comparison between indentation curves of the full MD and the hybrid FE/MD 

simulations is summarized in Fig. 4.7. The vertical axis represents the value of the tip 

force, defined as the resultant force at the indenting direction exerted upon the tip by 

nickel atoms, and the horizontal axis represents the indentation depth. The height of the 

tip is set to zero indentation depth when the atoms of the tip start interacting with the 

nickel atoms of the substrate. The positive and negative values of the tip force represent 

the repulsive and attractive force between the tip and the nickel substrate, respectively. 

From the results of Fig. 4.7, it can be seen that the indentation curves of both full 

MD and multiscale models are matched each other before the indentation depth 4.2 Å. 

After the indentation depth 4.2 Å, the indentation curve of the multiscale model displays 

quantitative differences in the evolution of trend variation as compared with the 

indentation curve of full MD model. The average gap value calculated from the 

indentation curves between the MD and multiscale models is smaller than 5%, even 

though the maximum gap value does not exceed 8%. The difference of indentation curves 

between the MD and multiscale models can be indicated as the below factors: the 

differently intrinsic theory between MD and FE to cause the inevitable discrepancy [69], 
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the FE precision unable to reach the precise level of MD for the descriptions of material 

behavior due to the coarse mesh grids of FE [69], the different boundary condition 

employed between MD and FE to make the divergence [64], and the innate diversity of 

fluctuation characteristic between MD and FE affected by the temperature effect to 

produce the inconsistent connection in the multiscale model [83]. After given the 

elucidations of above-mentioned factors, it is not surprising why the result of indentation 

curve for the multiscale simulations is unable to exactly match the full MD result of 

nanoindentation. Although there are quantitative differences in the indentation curve of 

multiscale model as compared with full MD solution; however, these differences do not 

significantly affect the indentation results of multiscale model because the entire trend 

variations of indentation curve for the multiscale simulations are similar to the 

indentation curve of full MD simulations. Therefore, the result of multiscale simulations 

from the indentation curve exhibits a good agreement with atomistic solution, which 

proves that the present multiscale model demonstrates the accuracy from nanoindentation 

on the nanoscale. 

Finally, in order to further examine whether the coupling state between MD and FE 

in the present mutiscale model is seamlessly, we take the deformation morphology of 

nickel substrate exerted by the tip at the maximum indentation depth, as shown in Fig. 4.8. 

Under the highly plastic deformation exerted by the tip, the material deformation from 

the atomistic descriptions of MD region near the indentation zone to the grids 

descriptions of FE region away from the indenter has a smooth and continuous variation, 

which shows a consistent gradation in the entire region of multiscale model. Besides, a 

more powerful signature of seamless coupling represents a validation of the multiscale 
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model in Fig. 4.8, which is that the deformation profiles pass from the MD region to the 

FE regions with no visible discontinuity at the FE/MD interface; i.e., the coupling of the 

MD region to the FE region appears seamless; this observation remains true even at 

higher spatial magnifications. These features effectively test the adaptability of our 

multiscale model, which reveals that the fine scale waves pass out of the MD region 

properly at the same time as the coarse scale pulse propagates into the coarse scale region 

when the boundary condition is correctly applied. 

4.3 The Nanoindentation Characteristics of Crystal GaN Metal Semiconductor 

As described above, Fig. 3.4 is a typical cyclic load–displacement plot for GaN thin 

film with a maximum load up to 200 mN. It is evident that for load below 50 mN, the 

load–displacement curve appears to be rather smooth during the whole 

loading–unloading cycle. However, it starts to exhibit irregularities, characterized by 

small sudden displacement excursions (‘pop-ins’) indicated by the arrows, during loading. 

The first apparent pop-in occurred at a load about 60 mN. Subsequently, the pop-ins 

phenomena are randomly distributed on the loading curve. We note here that the critical 

applied load for direct identification of pop-in events in the load–displacement curve not 

only is dependent on the type of indenters used, but also even very much dependent on 

the test system and the maximum applied load used. For instance, Kucheyev et al [169] 

reported that the critical load for pop-in to occur varied in the range of ~24–40 mN for 

GaN films at an indentation load of 100 mN by using ANU UMIS-2000 Nanoindenter 

Systems with a spherical indenter tip. While, in our previous study [132], we found that 

the critical load for pop-in actually occurred in the range of ~1.2–1.5 mN for GaN films 

at an indentation load of 3 mN by using Hysitron Triboscope Nanoindenter Systems with 
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a Berkovich indenter tip. On the other hand, Ma et al [170] reported that, although 

pop-ins were evidently observed with 100 mN load in their system, there were no 

apparent features of pop-ins in the load–displacement curve when an indentation load of 

500 mN was applied. They attributed it to the lack of enough resolution when larger load 

was applied. Another important feature to be noted is that there is no apparent 

‘irregularity’ on any of the unloading segments, which has been regarded as a signature of 

absence of phase transformation [88,137]. The present results are largely in agreement 

with previous studies on GaN thin films [88,137,171], except that the values of the 

mechanical parameters are different (Table 4-1). We suspect that these discrepancies are 

mainly due to the various indentation methods used. For instance, the tip– surface contact 

configuration and stress distribution for the Berkovich indenter tip can be drastically 

different from that for the spherical tip or Vickers-type indenters. 

The physical mechanism of the pop-ins appearing in the load–displacement curve 

has been extensively discussed in the literature. Among all, crack formation, sudden 

occurrence of pressure-induced phase transformation, and generation of slip bands due to 

dislocation propagation during the indentation process were identified to have occurred in 

different systems. Bradby et al [88], using the spherical indenter with a tip radius of 4.2 

µm, first observed that in Wurtzite structure GaN films there existed multiple 

discontinuities upon loading. Since there was no crack and no pressure-induced phase 

transformation observed in their TEM investigation, they attributed the main deformation 

mechanism to nucleation of slip bands on the basal planes. In their more recent studies 

[171], cracks were found at the intersections of converging {111} slip bands in cubic 

structure GaAs. On the other hand, for hexagonal GaN and ZnO with two slip systems 



 86

(both the basal and pyramidal planes), although dislocations slipping on one system are 

impeded by the other during plastic deformation, there were no cracks formed for loads 

up to as high as 900 mN and 200 mN for GaN and ZnO, respectively [171]. Instead, there 

was a profound pile-up of the material far from the indenter contact diameter observed, 

suggesting that dislocations were being punched out into the surrounding material when 

loading continued. It is interesting to note that the similar multiple pop-ins characteristics 

were also observed in hexagonal structure InSe and GaSe single crystals [172]. In their 

high-temperature (370 
◦
C) Vickers diamond indentation experiments performed on (0001) 

N-polar GaN single crystals, Weyher et al [173] reported evidence of pressure-induced 

transition from the wurtzite to the energetically most favourable rocksalt structure a very 

high load of 2 N. Unfortunately, since there was no load–displacement measurement, it is 

not clear how the pop-in events correlate with phase transitions. Nevertheless, the above 

discussions do suggest that multiple pop-ins indeed are specific features of materials with 

hexagonal lattice structure and geometry of the indenter tip may play an important role in 

determining the nanoindentation-induced mechanical responses. Thus, in order to identify 

the deformation mechanisms specific to the Berkovich nanoindentation direct 

microstructure characterization in the vicinity of the indented area is needed. 

The scanning electron microscopy (SEM) observation shown in the inset of Fig. 3.4 

does not reveal any evidence of material pile-ups and signs of crack formation on the film 

surface around the indented area. There are no ‘pop-outs’ on the unloading curves either 

(Fig. 3.4), suggesting that phase transitions like that observed in indented Si [174] are 

probably not occurring beneath the indenter tip for GaN films. The absence of pop-out 

serration in the unloading segments load– displacement curves, surface pile-ups, and 
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cracks indicates that nanoindentation-induced deformation in GaN films is predominated 

by dislocation nucleation and propagations. Fig. 4.9(a) shows the bright-field TEM image, 

obtained by following the sample preparation procedures illustrated in Fig. 3.5, for a GaN 

film indented with a maximum load of 200 mN by a Berkovich indenter. It is evident 

from Fig. 4.9(a) that, for an estimated film thickness of 2 µm, the GaN film studied here 

shows almost perfect interface epitaxial relations with the sapphire substrate. Moreover, 

the image clearly displays that, within the film, the deformation features underneath the 

indented spot are primarily manifested by dislocation activities. Namely the slip bands 

are well aligned in parallel with the {0001} basal planes all the way down to the 

film–substrate interface. It is also interesting to note that the heavily strained features in 

the vicinity of the interface may not be just accidental artifacts resulting from sample 

preparation. They might be direct evidence for displaying that, due to the excellent 

interface epitaxy between film and substrate, the effects of indentation have, in fact, 

extended into the sapphire substrate. This argument may also partially explain that, due to 

the ease of relaxing the local stress right under the indenter’s tip via the massive substrate, 

indentation-induced phase transitions were rarely observed. 

In order to have a closer look at the dislocation activities immediately beneath the 

tip, Fig. 4.9(b) shows an enlarged TEM picture in the vicinity of the tip contact region. 

The picture clearly displays a typical microstructure of a heavily deformed material, 

characterized by features of very high density of dislocations. Nevertheless, the slip 

bands (dark thick lines in the photograph) clearly indicate that during the indentation the 

rapidly increasing dislocations can glide collectively along the easy directions. In the 

present case, in addition to those aligning parallel to the GaN–sapphire interface along 
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the (0001) basal planes, slip bands oriented at ~60
◦ 
to the sample surface can also be 

found. The 60
◦ 
slip bands, which are believed to originate from dislocations gliding along 

the {10 1 1} pyramidal planes, however, are distributed in much shallower regions near 

the contacting surface. It is indicative that a much higher stress level is needed to activate 

this slip system as compared with the one along the basal planes. Fig. 4.10 shows a more 

detailed microstructure near the intersections of the two sets of slip bands. The distorted 

slip bands and the extremely high dislocation densities at the intersections indicate the 

highly strained state of the material. However, even at the submicron scale, no evidence 

of subsurface cracking and film fragmentation was observed. In addition, the selected 

area diffraction (not shown here) of the heavily damaged regions did not show evidence 

of newly formed phases either. 

From the above observations and discussion, it is apparent that, in the Berkovich 

indentation scheme, the primary deformation mechanism for GaN films is dislocation 

nucleation and propagation along easy slip systems, similar to that concluded with a 

spherical indenter [88]. Since the pop-in events are usually observed after permanent 

plastic deformation has occurred (50 mN in the present case) and two of the possible 

mechanisms, the deformation-induced phase transition and fracture of film [175] were 

basically ruled out, the most likely mechanism responsible for the pop-ins appears to be 

associated with the activation of dislocation sources [176]. In this scenario, plastic 

deformation prior to the pop-in event is associated with the individual movement of a 

small number of newly nucleated and pre-existing dislocations. As the number of 

dislocations is increased and entangled with each other, large shear stress is quickly 

accumulated underneath the indenter tip. When the local stress underneath the tip reaches 
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some threshold level, a burst of collective dislocation movement on the easy slip systems 

is activated, leading to a large release of local stress and a pop-in event on the 

load–displacement curve. Each of these collective dislocation movements is reflected as a 

slip band in the indented microstructure displayed in Fig. 4.9. Notice that, although the 

slip bands appeared to stop near the film–substrate interface (Fig. 4.9(a)), the released 

stress due to this effect could extend deep into the substrate as mentioned above. 

Moreover, the narrow spacing of the dense bands of defects and/or dislocations along the 

basal planes near the surface suggests that, in the later stage of indentation, a large 

indentation load, such as the 200 mN used in the present experiments, starts to activate 

extensive slip bands along the 60
◦ 
pyramidal planes. The extensive interactions between 

the dislocations slipping along the two slip systems, thus, confined the slip bands in a 

shallow regime, which, in turn, resulted in a heavily deformed and strain-hardened lattice 

structure. Finally, we note that the so-called ‘slip-stick’ behaviour [88], characterized by 

material pile-ups caused by interactions between the as-grown defects and the 

indentation-induced dislocations, is not significant in this study. Whether it is due to the 

insignificant grown-in defect density of our GaN films or to the specific geometric shape 

of the indenter tip used is not clear at present and further studies may be required to 

clarify this issue. 
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Table 4-1 A comparison of the material properties of three nickel crystallographic 
substrates with (100), (110), and (111) orientation 
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Fig. 4.1 Indentation curves of the three nickel substrates.
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Fig. 4.2 Three dimension snapshots of nickel (100) crystallographic substrate in 

different indentation depths. 
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Fig. 4.3 Three dimension snapshots of nickel (110) crystallographic substrate in 

different indentation depths. 
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Fig. 4.4 Three dimension snapshots of nickel (111) crystallographic substrate in 

different indentation depths.



 95
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Fig. 4.5 Pile-up patterns of the top view for the (a) (100), (b) (110) and (c) (111) 
oriented nickel single crystal surfaces obtained from the present MD simulation. 
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Fig. 4.6 The cohesive energy curves between nickel atoms of the crystallographic 
nickel substrates with (100), (110) and (111) orientation surfaces. 
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Fig. 4.7 Indentation curves of the nickel substrate of both multiscale and full MD 
models. 
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Fig. 4.8 Close-up snapshot for the deformation morphology of multiscale model 
from the lateral view of nickel substrate exerted by the tip at the maximum 
indentation depth. 
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Fig. 4.9 TEM Bright-field images of specimen after an indentation load to 200 mN. 
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Fig. 4.10 A close-up view of TEM bright-field image of the heavily deformed region 
of the GaN thin film. 



 100

Chapter 5 Conclusion 

5.1 Summary 

The numerical analysis and the experimental test are performed on the study for the 

material characteristics of metal thin films by using nanoindentation technique. From the 

present results of nanoindentation, the conclusions of the present studies can be 

summarized as follows: 

Firstly, the strain energy of the substrate exerted by the tip is stored by the formation 

of homogeneous nucleation, and is dissipated by the dislocation sliding of the {111} 

plane. The steep variations of the indentation curve are affected by the numbers of slip 

angles of the {111} sliding plane. The pile-up patterns of the three nickel substrates prove 

that the crystalline nickel materials also produce the pile-up phenomenon by 

nanoindentation under the nanoscale. The effects of FCC surface orientation in material 

properties on the nanoscale are observable through the slip angle numbers which 

influence hardness values, as well as the cohesive energy of different crystallographic 

surfaces that indicate Young’s modulus. 

Secondly, the indentation curve of multiscale simulations exhibits a good agreement 

with atomistic solution, which proves that the accuracy of the present multiscale model. 

The deformation profiles display a consistent gradation in the entire region and reflect no 

visible discontinuity at the FE/MD interface, which demonstrates that the coupling for 

MD and FE in the multiscale model is seamlessly. 

Finally, the primary nanoindentation-induced deformation mechanism in GaN thin 

films is nucleation and propagation of dislocations. The basal and pyramidal planes of 

GaN lattice are acting as the primary slip systems for collective dislocation motions, with 
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the latter being activated at a higher stress state and hence later stage of indentation. 

5.2 Future Prospects 

For the future prospects, the following is the research directions that may be 

identified as necessary and potentially profitable, included as follows: MD simulations on 

the material characteristics of ZrNi amorphous alloy by using nanoindentation; MD 

simulations on the material characteristics of high polymer and biomolecular substrates 

by using nanoindentation; the multiscale simulations for the coupling of molecular 

dynamics, molecular statics and finite element method; the multiscale simulations for the 

coupling of ab initio, molecular dynamics and finite element method; the fullscale 

simulations for the coupling of ab initio, molecular dynamics, molecular statics and finite 

element method. 
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